Purpose: We investigated the effects of threat and trait anxiety on state anxiety and how that affects police officers’ actions during an arrest. Most experiments on police performance under anxiety test the performance of one particular skill. Yet, police work often involves concerted use of a combination of skills. Methods: We created situations – with two different levels of threat – in which officers had to choose and initiate their actions to control and arrest a non-cooperative suspect. We examined whether threat, trait anxiety and state anxiety influenced decision-making (e.g., choosing the appropriate actions) and performance (e.g., quality of communication and the execution of skills). Results: Trait anxiety affected the level of state anxiety, but not any of the decision-making and performance variables. As for decision-making, results showed that only threat determined which action officers took to gain control over the suspect. As for performance, higher levels of state anxiety were accompanied by lower scores of overall performance, communication, proportionality of applied force and quality of skill execution. Conclusion: It is concluded that state anxiety not only impairs performance of single perceptual-motor tasks, but also relevant accompanying skills such as communicating and applying appropriate force. We argue that police training should focus on an integrated set of decision-making and perceptual-motor skills and not just on the performance of isolated motor skills.
DOCUMENT
Introduction Negative pain-related cognitions are associated with persistence of low-back pain (LBP), but the mechanism underlying this association is not well understood. We propose that negative pain-related cognitions determine how threatening a motor task will be perceived, which in turn will affect how lumbar movements are performed, possibly with negative long-term effects on pain. Objective To assess the effect of postural threat on lumbar movement patterns in people with and without LBP, and to investigate whether this effect is associated with task-specific pain-related cognitions. Methods 30 back-healthy participants and 30 participants with LBP performed consecutive two trials of a seated repetitive reaching movement (45 times). During the first trial participants were threatened with mechanical perturbations, during the second trial participants were informed that the trial would be unperturbed. Movement patterns were characterized by temporal variability (CyclSD), local dynamic stability (LDE) and spatial variability (meanSD) of the relative lumbar Euler angles. Pain-related cognition was assessed with the task-specific ‘Expected Back Strain’-scale (EBS). A three-way mixed Manova was used to assess the effect of Threat, Group (LBP vs control) and EBS (above vs below median) on lumbar movement patterns. Results We found a main effect of threat on lumbar movement patterns. In the threat-condition, participants showed increased variability (MeanSDflexion-extension, p<0.000, η2 = 0.26; CyclSD, p = 0.003, η2 = 0.14) and decreased stability (LDE, p = 0.004, η2 = 0.14), indicating large effects of postural threat. Conclusion Postural threat increased variability and decreased stability of lumbar movements, regardless of group or EBS. These results suggest that perceived postural threat may underlie changes in motor behavior in patients with LBP. Since LBP is likely to impose such a threat, this could be a driver of changes in motor behavior in patients with LBP, as also supported by the higher spatial variability in the group with LBP and higher EBS in the reference condition.
LINK
Cybersecurity threat and incident managers in large organizations, especially in the financial sector, are confronted more and more with an increase in volume and complexity of threats and incidents. At the same time, these managers have to deal with many internal processes and criteria, in addition to requirements from external parties, such as regulators that pose an additional challenge to handling threats and incidents. Little research has been carried out to understand to what extent decision support can aid these professionals in managing threats and incidents. The purpose of this research was to develop decision support for cybersecurity threat and incident managers in the financial sector. To this end, we carried out a cognitive task analysis and the first two phases of a cognitive work analysis, based on two rounds of in-depth interviews with ten professionals from three financial institutions. Our results show that decision support should address the problem of balancing the bigger picture with details. That is, being able to simultaneously keep the broader operational context in mind as well as adequately investigating, containing and remediating a cyberattack. In close consultation with the three financial institutions involved, we developed a critical-thinking memory aid that follows typical incident response process steps, but adds big picture elements and critical thinking steps. This should make cybersecurity threat and incident managers more aware of the broader operational implications of threats and incidents while keeping a critical mindset. Although a summative evaluation was beyond the scope of the present research, we conducted iterative formative evaluations of the memory aid that show its potential.
DOCUMENT
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
Public safety is under enormous pressure. Demonstrations regularly result in riots and VIPs are often threatened even at their homes ! Criminal graffiti-gangs are threatening security professionals and costing the Dutch railways (NS), causing a loss of 10 M€ yearly. The safety incidents often escalate quickly, therefore, they require a very quick and correct scaling up of the security professionals. To do so, it is necessary for the security professionals to get very quick and accurate overview of the evolving situation using Mobile Drone intervention unit for quick response (Mobi Dick). The successfully completed project The Beast (9/11) has delivered a universal docking station with an automatic security drone. The drone takes off from a permanently installed docking station. Nest Fly emerged as a startup from this RAAK project, and it has already developed the prototype further to a first product. Based on extensive interaction with security professionals, it has been concluded that a permanently installed docking station is not suitable for all emergency cases. Therefore, a mobile, car-roof top mounted, docking station with a ready-for-take-off drone is required for the more severe and quickly escalating incidents. These situations require a drone taking off from the car-roof top mounted docking station while the vehicles continue to drive towards the incident. In this RAAK KIEM, a feasibility study will be executed by developing a car-roof top docking station. The concept will functionally be designed within the project (task 1). The two required subsystems car roof docking station (task 2) and dynamic take-off & landing (task 3) will technically be developed and integrated (task 4). The outcome of the experiments in this task will show the feasibly of the idea. Task 5 will ensure the results are disseminated in new cooperation’s, publications, and educational products.