Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers (polyesters), produced by a wide range of bacterial strains. They are gaining increasing interest in different research fields, due to their sustainability and environmental-friendly properties. Additionally, PHAs are also biocompatible, which makes them interesting for tissue engineering and regenerative medicine. At the same time, they are characterized by properties ideal for 3D printing processing, such as high tensile strength, easy processability and thermoplasticity. To date, the techniques employed in PHAs printing mostly include fused deposition modeling (FDM), selective laser sintering (SLS), electrospinning (ES), and melt electrospinning (MES). In this review, we provide a comprehensive summary of the versatile and sustainably sourced bacterial PHAs, also modified by blending with natural and synthetic polymers (e.g., PLA, PGA) or combining them with inorganic fillers (e.g., nanoparticles, glass), used for 3D printing in biomedical applications. We specify focus on the printing conditions and the properties of the obtained scaffolds with a focus on the print resolution and scaffolds mechanical and biological properties. New perspectives in the emerging field of PHAs biofabrication process, characterized by sustainability and efficiency of the scaffold production, are demonstrated. The use of alternative printing techniques, i.e. melt electrowriting (MEW), and producing smart and functional materials degrading on demand under in vitro and in vivo conditions is proposed.
LINK
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
De chemische industrie in Nederland heeft in toenemende mate last van internationale concurrentie. Om haar voorloperrol te kunnen behouden en tevens de transitie naar duurzaamheid te bewerkstelligen is een omslag nodig en moet de afhankelijkheid van de petrochemie worden verminderd. Een goede kans om de CO2-belasting van chemische processen te verminderen en nieuwe kansen te benutten is om meer te kijken naar toepassingen en implementatie van elektrochemische synthese, ook voor modificaties van biomassastromen. In dit project wordt door het consortium Hanzehogeschool/Rijksuniversiteit Groningen/KNN cellulose onderzocht of het oxidatiesysteem TEMPO/NaOCl/NaBr, een systeem dat veel gebruikt wordt om selectief primaire alcoholen van bijvoorbeeld polysachariden om te zetten naar de overeenkomstige carboxylaten, kan worden omgezet naar een elektrochemisch proces voor de oxidatie van cellulose en restcellulose . Hierbij wordt de enorme zoutlast van de oxidatie (NaCl uit NaOCl) voorkomen en tevens de isolatie van de eindverbinding een stuk eenvoudiger (er is geen scheiding van product en zouten meer nodig), en daarmee significant duurzamer. Na de reactie wordt de TEMPO-katalysator middels een azeotropische destillatie uit water teruggewonnen en hiermee is het proces vrijwel volledig circulair en worden er vrijwel geen afval/reststromen gevormd. In samenwerking met het KNN Cellulose wordt getracht om cellulose alsmede ruwe cellulose uit o.a. de afvalwaterzuivering om te zetten naar het overeenkomstige β-polyglucuronaat. Dit gemodificeerde polysacharide heeft potentie heeft als alginaatvervanger, gebruik in medische toepassingen (tissue engineering, cel therapie), cosmetica, nano-materialen, ontharder van water en tevens persepctief voor de synthese van fijnchemicaliën zoals D-glucuronic acid, D-glucaric acid, adipinezuur en FDCA.