DOCUMENT
DOCUMENT
Het zwaartepunt van de ingenieursopleiding is aan het verschuiven. De Utrechtse ingenieur zal zijn werk en toegevoegde waarde steeds meer vinden op het terrein van ontwerpen. Aan het ontwerpproces zelf worden steeds zwaardere eisen gesteld. Constructie en productie vinden in toenemende mate elders in de wereld plaats. Gelet op deze outsourcing zal de ontwerper ook in staat moeten zijn het maakproces op afstand te besturen, zowel wat betreft kwaliteit en geld als qua tijd. Ontwerpen kan vanuit verschillende perspectieven beschouwd worden: vanuit de conceptuele fase, de realisatiefase (verdere aanpassingen) of de gebruiksfase (upgrading, bediening et cetera). Bij onderzoeksinstellingen als TNO, maar ook bij vooraanstaande bedrijven als OCE, Philips en ASML zien we dat steeds meer sprake is van een integrale ontwerpaanpak. Het tijdperk van massaproductie evolueert naar een tijdperk van maatwerk, waarin de behoeften van de gebruiker centraal staan. De interactie tussen de technologie en de gebruiker zal een steeds belangrijker plaats in gaan nemen, en juist op dit vlak zal de Utrechtse ingenieur zich onderscheiden.
DOCUMENT
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
Automated driving nowadays has become reality with the help of in-vehicle (ADAS) systems. More and more of such systems are being developed by OEMs and service providers. These (partly) automated systems are intended to enhance road and traffic safety (among other benefits) by addressing human limitations such as fatigue, low vigilance/distraction, reaction time, low behavioral adaptation, etc. In other words, (partly) automated driving should relieve the driver from his/her one or more preliminary driving tasks, making the ride enjoyable, safer and more relaxing. The present in-vehicle systems, on the contrary, requires continuous vigilance/alertness and behavioral adaptation from human drivers, and may also subject them to frequent in-and-out-of-the-loop situations and warnings. The tip of the iceberg is the robotic behavior of these in-vehicle systems, contrary to human driving behavior, viz. adaptive according to road, traffic, users, laws, weather, etc. Furthermore, no two human drivers are the same, and thus, do not possess the same driving styles and preferences. So how can one design of robotic behavior of an in-vehicle system be suitable for all human drivers? To emphasize the need for HUBRIS, this project proposes quantifying the behavioral difference between human driver and two in-vehicle systems through naturalistic driving in highway conditions, and subsequently, formulating preliminary design guidelines using the quantified behavioral difference matrix. Partners are V-tron, a service provider and potential developer of in-vehicle systems, Smits Opleidingen, a driving school keen on providing state-of-the-art education and training, Dutch Autonomous Mobility (DAM) B.V., a company active in operations, testing and assessment of self-driving vehicles in the Groningen province, Goudappel Coffeng, consultants in mobility and experts in traffic psychology, and Siemens Industry Software and Services B.V. (Siemens), developers of traffic simulation environments for testing in-vehicle systems.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low. As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers. To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is: How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems? HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases: I. Highway: non-professional drivers; II. Distribution Centre: professional drivers.