Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
DOCUMENT
Anaesthesiology residents at Leiden University Medical Center regularly undergo simulation training with a full-body manikin. This is a vital aspect of the clinical programme providing a stressful yet safe environment for effective critical resource management (CRM) training. Unfortunately, the COVID-19 pandemic made real-life simulations challenging due to organizational and preventive measures. As a result, we explored asynchronous training opportunities utilizing a multiplayer virtual reality (VR) simulation. VR simulations can create personalized scenarios, facilitating differentiated learning through enhanced sensory immersion. VR offers full immersion with a high potential for visual effects, simultaneously allowing changes in patient characteristics such as sex, weight, external trauma and age, which is impossible with regular manikin training. The three-step approach involved (1) identifying user requirements, (2) developing a prototype and (3) assessing the projectandapos;s viability and interest for expansion.
MULTIFILE
We investigated to what extent correctional officers were able to apply skills from their self-defence training in reality-based scenarios. Performance of nine self-defence skills were tested in different scenarios at three moments: before starting the self-defence training programme (Pre-test), halfway through (Post-test 1), and after (Post-test 2). Repeated measures analyses showed that performance on skills improved after the self-defence training. For each skill, however, there was a considerable number of correctional officers (range 4–73%) that showed insufficient performance on Post-test 2, indicating that after training they were not able to properly apply their skills in reality-based scenarios. Reality-based scenarios may be used to achieve fidelity in assessment of self-defence skills of correctional officers.Practitioner summary: Self-defence training for correctional officers must be representative for the work field. By including reality-based scenarios in assessment, this study determined that correctional officers were not able to properly apply their learned skills in realistic contexts. Reality-based scenarios seem fit to detect discrepancies between training and the work field. Abbreviations: DJI: Dutch National Agency for Correctional Insitutes; ICC: Intraclass Correlation Coefficient.
DOCUMENT
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
Big data spelen een steeds grotere rol in de (semi)professionele sport. De hoeveelheid gegevens die opgeslagen wordt, groeit exponentieel. Sportbegeleiders (coaches, inspanningsfysiologen, sportfysiotherapeuten en sportartsen) maken steeds vaker gebruik van sensoren om sporters te monitoren. Tijdens trainingen en wedstrijden worden de hartslagen, afgelegde afstanden, snelheden en versnellingen van sporters gemeten. Het analyseren van deze data vormt een grote uitdaging voor het begeleidingsteam van de sporters. Sportbegeleiders willen big data graag inzetten om meer grip te krijgen op sportblessures. Blessures kunnen namelijk desastreuze gevolgen hebben voor teamprestaties en de carrière van (semi)professionele sporters. In totaal stopt maar liefst 33% van de topsporters door blessures met hun sportloopbaan. Daarnaast is uitval door blessures een belangrijke oorzaak van stagnatie van talentontwikkeling. Het lectoraat Sportzorg van de Hogeschool van Amsterdam heeft veel expertise op het gebied van blessurepreventie in de sport. Sportbegeleiders hebben het lectoraat Sportzorg benaderd om antwoord te krijgen op de onderzoeksvraag: Wat zijn op data gebaseerde indicatoren om sportblessures te voorspellen? Deze onderzoeksvraagstelling is opgesplitst in de volgende deelvragen: 1. Hoe kan met sensoren relevante data van sporters verzameld worden om de sportbelasting in kaart te brengen? 2. Welke parameters kunnen blessures voorspellen? 3. Hoe kunnen deze parameters op betekenisvolle en eenvoudige wijze naar sportbegeleiders en sporters teruggekoppeld worden? Het project resulteert in de volgende projectresultaten: - Een overzicht van nauwkeurige en gebruiksvriendelijke sensoren om sportbelasting in kaart te brengen - Een overzicht van relevante parameters die blessures kunnen voorspellen - Een online tool dat per sporter aangeeft of de sporter wel of niet training- of wedstrijdfit is Bij dit project zijn de volgende organisaties betrokken: Hogeschool van Amsterdam, Universiteit Leiden, VUmc, Rijksuniversiteit Groningen (RuG), Amsterdam Institute of Sport Science (AISS), Johan Sports, Centrum voor Topsport en Onderwijs (CTO) Amsterdam, Koninklijke Nederlandse Voetbalbond (KNVB), de Nederlandse Vereniging voor Fysiotherapie in de Sport (NVFS), VV Noordwijk (voetbalclub) en Black Eagles (basketbalclub).