To contribute positively to systemic transitions within local communities, architects need to be critical, reflective, far-sighted communicators. This paper presents educational practices developing adaptive, systemic and co-creative approaches within the training of architectural Masters students. It evaluates the first outcomes of a four-year research by design studio executed by the Academy of Architecture in Groningen, in which experiential learning helps development of heightened awareness, appropriate mindsets and critical thinking, enabling students to identify problems and challenges specific to their profession. Students, stakeholders, teachers and researchers involved in the studio form a learning community that critically monitors the educational program. By working on "live" projects, the studio produces insights concerning local scale energy transition in the North of The Netherlands.Global issues urge fundamental changes in the Dutch energy system and recent accumulations of earthquakes resulting from natural gas exploitation in the region of Groningen make the 'energy transition' inevitable. Whilst alternatives, proposed by the Dutch government, mainly consist of isolated, mono-functional interventions, the studio investigates integrative systemic scenarios that seek to enhance resilience on a human scale by embedding the energy transition within local communities. However, systemic transitions may be unpredictable, as they tend to play out within complex spatial, social and economic arenas, involving multiple, multi-level stakeholders. Shove and Walker (2007) caution professionals, involved in long-term transitions, to remain critical during the "[continuous] cycle of problem-definition, intervention and response".Ziegler and Bouma argue that analysing is designing in the reversed direction. The first year's outcomes consist of adaptic architectonic interventions within local communities, integrating flows of energy, food and waste. Using interviews with the learning community, the paper describes the educational processes leading to these outcomes, focusing on the formation and elaboration of the appropriate questions concerning stakeholders' interests; how these questions are kept central and deepened throughout projects; how they are represented at their closure and, above all, how they renew awareness concerning future regional needs. Initial findings stress the necessity of a circular research by design process, not necessarily to solve, but to accurately define those needs.
DOCUMENT
This study provides a comprehensive analysis of the AI-related skills and roles needed to bridge the AI skills gap in Europe. Using a mixed-method research approach, this study investigated the most in-demand AI expertise areas and roles by surveying 409 organizations in Europe, analyzing 2,563 AI-related job advertisements, and conducting 24 focus group sessions with 145 industry and policy experts. The findings underscore the importance of both general technical skills in AI related to big data, machine learning and deep learning, cyber and data security, large language models as well as AI soft skills such as problemsolving and effective communication. This study sets the foundation for future research directions, emphasizing the importance of upskilling initiatives and the evolving nature of AI skills demand, contributing to an EU-wide strategy for future AI skills development.
MULTIFILE
This paper describes a research about the changing role and competences of teachers and the willingness of the teachers to change. The researchers developed and conducted a survey at Fontys University of Applied Sciences department engineering to find out how teachers teach and how they would want to teach. The conclusion drawn from this research results in five subjects of attention: 1 To investigate new teaching competences 2 To investigate new teaching strategies 3 To develop collaborating professional environments for teachers 4 To develop a formal declaration of how companies can participate effectively in the process of the transition of youngsters to professional practitioners 5 To investigate how the organization should change their culture and structure towards a professional learning environment for students and teachers. The above mentioned items will be subject of further research in the coming study year. The main goal is to develop a business case or strategic plan on how to implement change in teaching engineering education.
MULTIFILE
Energy transition is key to achieving a sustainable future. In this transition, an often neglected pillar is raising awareness and educating youth on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. The Master Energy for Society, and particularly the course “Society in Transition”, aims at providing a first overview on the urgency and complexities of the energy transition. However, educating on the energy transition brings challenges: it is a complex topic to understand for students, especially when they have diverse backgrounds. In the last years we have seen a growing interest in the use of gamification approaches in higher institutions. While most practices have been related to digital gaming approaches, there is a new trend: escape rooms. The intended output and proposed innovation is therefore the development and application of an escape room on energy transition to increase knowledge and raise motivation among our students by addressing both hard and soft skills in an innovative and original way. This project is interdisciplinary, multi-disciplinary and transdisciplinary due to the complexity of the topic; it consists of three different stages, including evaluation, and requires the involvement of students and colleagues from the master program. We are confident that this proposed innovation can lead to an improvement, based on relevant literature and previous experiences in other institutions, and has the potential to be successfully implemented in other higher education institutions in The Netherlands.
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.