Dagelijks worden duizenden dieren dwars door Europa en zelfs wereldwijd vervoerd. Vooral veetransport vindt op grote schaal plaats. Wat voor gevolg heeft dergelijk transport voor het welzijn van dieren? Dat is de vraag die op 14 maart centraal stond tijdens ‘Dieren op reis : businessclass of beestenboel?’, het Studium Generale georganiseerd door het Lectoraat Welzijn van Dieren van Hogeschool Van Hall Larenstein te Leeuwarden.
DOCUMENT
This century, greenhouse gas emissions such as carbon dioxide, methane and nitrogen oxides must be significantly reduced. Greenhouse gases absorb and emit infrared radiation that contributes to global warming, which can lead to irreversible negative consequences for humans and the environment. Greenhouse gases are caused by the burning of fossil fuels such as crude oil, coal, and natural gas, but livestock farming, and agriculture are also to blame. In addition, deforestation contributes to more greenhouse gases. Of the natural greenhouse gases, water vapor is the main cause of the greenhouse effect, accounting for 90%. The remaining 10% is caused from high to low by carbon dioxide, methane, nitrogen oxides, chlorofluorocarbons, and ozone. In addition, there are industrial greenhouse gases such as fluorinated hydrocarbons, sulphurhexafluoride and nitrogen trifluoride that contribute to the greenhouse effect too. Greenhouse gases are a major cause of climate change, with far-reaching consequences for the welfare of humans and animals. In some regions, extreme weather events like rainfall are more common, while others are associated with more extreme heat waves and droughts. Sea level rise caused by melting ice and an increase in forest fires are undesirable effects of climate change. Countries in low lying areas fear that sea level rise will force their populations to move to the higher lying areas. Climate change is affecting the entire world. An estimated 30-40% o f the carbon dioxide released by the combustion of fossil fuels dissolves into the surface water resulting in an increased concentration of hydrogen ions. This causes the seawater to become more acidic, resulting in a decreasing of carbonate ions. Carbonate ions are an important building block for forming and maintaining calcium carbonate structures of organisms such as oysters, mussels, sea urchins, shallow water corals, deep sea corals and calcareous plankton.
MULTIFILE
Duurzaamheidsbalans: verschillende onderzoeksrapporten laten zien dat Europese grondstoffen voor eiwit in veevoer milieuvriendelijker zijn dan soja uit Zuid-Amerika. Het is daarom vanuit milieu-oogpunt wenselijk om meer regionaal geteeld eiwitrijk veevoer te gebruiken in Nederland.Ketenaanpak: De Raad meent dat voor het oplossen van de geïdentificeerde knelpunten een ketenaanpak essentieel is. Niet slechts één partij heeft de oplossing. Momenteel ontbreekt verbinding en kennis in de keten. Voor deze verbinding is het nodig dat alle betrokken partijen met elkaar open het gesprek aangaan en elkaar betrekken bij het oplossen van ieders knelpunten.Voornaamste knelpunten 1. HANDEL: Door afspraken zoals Blair House agreement en GATT is eiwit van buiten de EU goedkoop en is een achterstand opgelopen in kennis over en ervaring met Europese eiwitteelt. 2. TEELT: De teelt van eiwitgewassen is relatief onbekend bij Nederlandse boeren, rassen zijn verouderd of onvoldoende beschikbaar en het saldo is in veel gevallen nog te laag, waarbij positieve effecten onbekend of ondergewaardeerd zijn.3. VERWERKING en 4. SCHAAL: Regionaal eiwitrijk veevoer is onvoldoende beschikbaar, vooral omdat verwerkingsmogelijkheden nog beperkt zijn en de kleinere schaal extra kosten met zich mee brengt. Dit maakt tevens investeringen onaantrekkelijk.5. MARKT: Regionaal geteeld eiwit leidt als gevolg van een hogere kostprijs tot duurder veevoer. Het halen van een meerprijs bij de consument voor producten geproduceerd met regionaal veevoer lukt (nog) niet, mede omdat er onvoldoende bewustzijn is over de problematiek. Maatschappelijke organisaties, retail en de overheid spelen hierin een rol.
DOCUMENT
Animal welfare is a multidimensional phenomenon and currently its on-farm assessment requires complex, multidimensional frameworks involving farm audits which are time-consuming, infrequent and expensive. The core principle of precision agriculture is to use sensor technologies to improve the efficiency of resource use by targeting resources to where they give a benefit. Precision livestock farming (PLF) enables farm animal management to move away from the group level to monitoring and managing individual animals. A range of precision livestock monitoring and control technologies have been developed, primarily to improve livestock production efficiency. Examples include using camera systems monitoring the movement of housed broiler chickens to detect problems with feeding systems or disease and leg-mounted accelerometers enabling the detection of the early stages of lameness in dairy cows. These systems are already improving farm animal welfare by, for example, improving the detection of health issues enabling more rapid treatment, or the detection of problems with feeding systems helping to reduce the risk of hunger. Environmental monitoring and control in buildings can improve animal comfort, and automatic milking systems facilitate animal choice and improve human-animal interactions. Although these precision livestock technologies monitor some parameters relevant to farm animal welfare (e.g. feeding, health), none of the systems yet provide the broad, multidimensional integration that is required to give a complete assessment of an animal’s welfare. However, data from PLF sensors could potentially be integrated into automated animal welfare assessment systems, although further research is needed to define and validate this approach.
DOCUMENT
Abstract for the European Association for Sport Management conference 2015 in Dublin. The abstract describes a study to the economic value of the equestrian sector in the province of Drenthe (Netherlands) and the possibilities for the equestrian sector to optimize its economic value.
DOCUMENT
Biogas plays an important role in many future renewable energy scenarios as a source of storable and easily extracted form of renewable energy. However, there remains uncertainty as to which sources of biomass can provide a net energy gain while being harvested in a sustainable, ecologically friendly manner. This study will focus on the utilization of common, naturally occurring grass species which are cut during landscape management and typically treated as a waste stream. This waste grass can be valorized through co-digestion with cow manure in a biogas production process. Through the construction of a biogas production model based on the methodology proposed by (Pierie, Moll, van Gemert, & Benders, 2012), a life cycle analysis (LCA) has been performed which determines the impacts and viability of using common grass in a digester to produce biogas. This model performs a material and energy flow analysis (MEFA) on the biogas production process and tracks several system indicators (or impact factors), including the process energy return on energy investment ((P)EROI), the ecological impact (measured in Eco Points), and the global warming potential (GWP, measured in terms of kg of CO2 equivalent). A case study was performed for the village of Hoogkerk in the north-east Netherlands, to determine the viability of producing a portion of the village’s energy requirements by biogas production using biomass waste streams (i.e. common grass and cow manure in a co-digestion process). This study concludes that biogas production from common grass can be an effective and sustainable source of energy, while reducing greenhouse gas emissions and negative environmental impacts when compared to alternate methods of energy production, such as biogas produced from maize and natural gas production.
DOCUMENT
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT
This applied research is an attempt to analyse the effectiveness of milk marketing and facilitate developing a sustainable milk value chain for dairy farmer’s groups in Punakha district. Both quantitative and qualitative methods of survey, key informant interviews and focus group discussion were used as research strategies to obtain relevant information. The survey was conducted using both open and closed-ended structured questionnaire in seven subdistricts of Barp, Dzomi, Guma, Kabisa, Shelnga-Bjemi, Talog and Toedwang. A total of 60 respondents; 30 existing milk suppliers and 30 non-milk suppliers were drawn using a simple random sampling technique. One-to-one interviews were conducted following semi-structured questions with eight key informants in the chain. One focus group interview was conducted with the existing dairy farmer groups representatives to triangulate and discover in-depth information about the situation of the milk value chain in the district. The survey data was analysed using the Statistical Package for Social Sciences software version 20. A method of grounded theory design was used to analyse the qualitative data of interviews and focus group discussion. Value chain mapping was employed for assessing the operational situation of the current milk chain. The mean cost of milk production was estimated at Nu.27.53 per litre and the maximum expenses were incurred in animal feeds which were estimated to be 46.34% of the total cost of milk production. In this study, milk producers had the highest share of added value and profit which were estimated at 45.45% and 44.85% respectively. Limited information and coordination amongst stakeholders have contributed to slow progression in the formal milk market. The finding reveals that 90% of nondairy farmer groups respondents were interested in joining formal milk marketing. The average morning milk available for supply from this group would be 4.41 ± 3.07 litres daily by each household. The study also found that 50% of the respondents were interested in supplying evening milk with an average of 4.43 ± 2.25 litres per day per household. Based on the result of this study, it was concluded that there are possibilities of expanding the milk value chain in the district. However, there is a need to enhance consistent milk supply through a quality-based milk payment system, access to reasonable input supplies, and facilitate strong multi-stakeholder processes along the milk value chain.
DOCUMENT
This is a case study which discusses the journey of a successful Ethiopian dairy entrepreneur. It turned out that the inclusiveness of the small holder farmer into the chain with fair incentive sharing mechainsms and guarenteed market access made her chain more efficient, reliable and profitable.
DOCUMENT
This booklet presents sixteen 'practice briefs' which are popular publications based on 12 Master and one Bachelor theses of Van Hall Larenstein University of Applied Sciences (VHL). All theses were commissioned through the research project entitled 'Inclusive and climate smart business models in Ethiopian and Kenyan dairy value chains (CSDEK)'. The objective of this research is to identify scalable, climate smart dairy business models in the context of the ongoing transformation from informal to formal dairy chains in Kenya and Ethiopia.
DOCUMENT