Of all patients in a hospital environment, trauma patients may be particularly at risk for developing (device-related) pressure ulcers (PUs), because of their traumatic injuries, immobility, and exposure to immobilizing and medical devices. Studies on device-related PUs are scarce. With this study, the incidence and characteristics of PUs and the proportion of PUs that are related to devices in adult trauma patients with suspected spinal injury were described. From January–December 2013, 254 trauma patients were visited every 2 days for skin assessment. The overall incidence of PUs was 28⋅3% (n = 72/254 patients). The incidence of device-related PUs was 20⋅1% (n = 51), and 13% (n = 33) developed solely device-related PUs. We observed 145 PUs in total of which 60⋅7% were related to devices (88/145). Device-related PUs were detected 16 different locations on the front and back of the body. These results show that the incidence of PUs and the proportion of device-related PUs is very high in trauma patients
Purpose Non-technical skills have gained attention, since enhancement of these skills is presumed to improve the process of trauma resuscitation. However, the reliability of assessing non-technical skills is underexposed, especially when using video analysis. Therefore, our primary aim was to assess the reliability of the Trauma Non-Technical Skills (T-NOTECHS) tool by video analysis. Secondarily, we investigated to what extent reliability increased when the T-NOTECHS was assessed by three assessors [average intra-class correlation (ICC)] instead of one (individual ICC). Methods As calculated by a pre-study power analysis, 18 videos were reviewed by three research assistants using the T-NOTECHS tool. Average and individual degree of agreement of the assessors was calculated using a two-way mixed model ICC. Results Average ICC was ‘excellent’ for the overall score and all five domains. Individual ICC was classified as ‘excellent’ for the overall score. Of the five domains, only one was classified as ‘excellent’, two as ‘good’ and two were even only ‘fair’. Conclusions Assessment of non-technical skills using the T-NOTECHS is reliable using video analysis and has an excellent reliability for the overall T-NOTECHS score. Assessment by three raters further improve the reliability, resulting in an excellent reliability for all individual domains.
Introduction: A trauma resuscitation is dynamic and complex process in which failures could lead to serious adverse events. In several trauma centers, evaluation of trauma resuscitation is part of a hospital's quality assessment program. While video analysis is commonly used, some hospitals use live observations, mainly due to ethical and medicolegal concerns. The aim of this study was to compare the validity and reliability of video analysis and live observations to evaluate trauma resuscitations. Methods: In this prospective observational study, validity was assessed by comparing the observed adherence to 28 advanced trauma life support (ATLS) guideline related tasks by video analysis to life observations. Interobserver reliability was assessed by calculating the intra class coefficient of observed ATLS related tasks by live observations and video analysis. Results: Eleven simulated and thirteen real-life resuscitations were assessed. Overall, the percentage of observed ATLS related tasks performed during simulated resuscitations was 10.4% (P < 0.001) higher when the same resuscitations were analysed using video compared to live observations. During real-life resuscitations, 8.7% (p < 0.001) more ATLS related tasks were observed using video review compared to live observations. In absolute terms, a mean of 2.9 (during simulated resuscitations) respectively 2.5 (during actual resuscitations) ATLS-related tasks per resuscitation were not identified using live observers, that were observed through video analysis. The interobserver variability for observed ATLS related tasks was significantly higher using video analysis compared to live observations for both simulated (video analysis: ICC 0.97; 95% CI 0.97-0.98 vs. live observation: ICC 0.69; 95% CI 0.57-0.78) and real-life witnessed resuscitations (video analyse 0.99; 95% CI 0.99-1.00 vs live observers 0.86; 95% CI 0.83-0.89). Conclusion: Video analysis of trauma resuscitations may be more valid and reliable compared to evaluation by live observers. These outcomes may guide the debate to justify video review instead of live observations.