Assistive technology supports maintenance or improvement of an individual’s functioning and independence, though for people in need the access to assistive products is not always guaranteed. This paper presents a generic quality framework for assistive technology service delivery that can be used independent of the setting, context, legislative framework, or type of technology. Based on available literature and a series of discussions among the authors, a framework was developed. It consists of 7 general quality criteria and four indicators for each of these criteria. The criteria are: accessibility; competence; coordination; efficiency; flexibility; user centeredness, and infrastructure. This framework can be used at a micro level (processes around individual users), meso level (the service delivery scheme or programme) or at a macro level (the whole country). It aims to help identify in an easy way the main strengths and weaknesses of a system or process, and thus guide possible improvements. As a next step in the development of this quality framework the authors propose to organise a global consultancy process to obtain responses from stakeholders across the world and to plan a number of case studies in which the framework is applied to different service delivery systems and processes in different countries.
The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
this thesis was simply a research done to see how the manor amsterdam can use technologies to enhance its guest eperience. Surveys and intervews were conducted to see what the guest preferences were after which an implementation process was also drawn up.
MULTIFILE
In 2021, Citython editions were held for the European cities of Eindhoven (Netherlands), Bilbao and Barcelona (Spain), Hamburg (Germany), and Lublin (Poland). Within this project, BUAS contributed to the organization of CITYTHON Eindhoven in cooperation with CARNET (an initiative by CIT UPC) and City of Eindhoven – an event which gives young talent the opportunity to work with mentors and experts for the development of innovative urban solutions. Participants of CITYTHON Eindhoven worked on three challenges:- Traffic safety in school zones - Travel to the campus- Make the city healthy The event took place between 18 May and 2 June 2021 with various experts, for example from ASML, City of Eindhoven and University of Amsterdam, giving inspirational talks and mentoring students throughout the ideation and solutions development process. The teams presented their solutions during the Dutch Technology Week and the winners were announced by Monique List-de Roos (Alderman Mobility and Transport, City of Eindhoven) on 2 June 2021. The role of BUAS within this project was to assist City of Eindhoven with the development of the challenges to be tackled by the participating teams, and find relevant speakers and mentors who would be supporting the students for the development of their solutions and jury members who would determine the winning teams. The project ended with a round table “Green and Safe Mobility for all: 5 Smart City(thon) Case studies” on November 17 organized as part of Smart City Expo World Congress 2021 in Barcelona. This project is funded by EIT Urban Mobility, an initiative of the European Institute of Innovation and Technology (EIT), a body of the European Union. EIT Urban Mobility acts to accelerate positive change on mobility to make urban spaces more livable. Learn more: eiturbanmobility.eu.Collaborating partnersCARNET (Lead organisation); Barcelona Institute of Technology for Habitat; Barcelona City Council; Bilbao City Hall; City of Hamburg; City of Eindhoven,; City of Lublin; Digital Hub Logistics Hamburg; Technical University of Catalonia, Tecnalia; UPC Technology Center.
Client: European Institute of Innovation and Technology (EIT) The European Institute of Innovation & Technology, a body of the European Union founded to increase European sustainable growth and competitiveness, has set up a number of Knowledge and Innovation Communities (KIC). One of these Communities is on climate change (Climate-KIC). In 2013, Climate-KIC in the Netherlands approved funding for the IMPACT project (IMPlementation & Adoption of Carbon footprint in Tourism travel packages). This ‘pathfinder’ project aimed to assess the viability of and market for a comprehensive carbon calculator. Such a calculator would enable enterprises in the wider travel industry to determine the carbon dioxide emissions, the main cause for climate change, of tourism products and include ‘carbon management’ in their overall policy and strategy. It is generally expected the cost for fuel and carbon will significantly rise in the near en medium future. The calculator will not only cover flights, but also other transport modes, local tourism activities and accommodations. When this pathfinder project finds interest for carbon management within the sector, we aim to start a much larger follow-up project that will deliver the calculator and tools. The IMPACT project was coordinated by the research institute Alterra Wagenigen UR, the Netherlands. Partners were: - Schiphol Airport Group, Amsterdam, The Netherlands- Technical University Berlin, Germany- TEC Conseil, Marseille, France- TUI Netherlands, Rijswijk, The Netherlands- NHTV Breda University for Applied Sciences, The NetherlandsThe project ran from September 2013 to February 2014.
Psychosocial problems related to social isolation are a growing issue for wellbeing and health and have become a significant societal problem. This is especially relevant for children and adults with chronic illnesses and disabilities, and those spending extended periods in hospitals or permanently living in assisted living facilities. A lack of social relationships, social connectivity, and the inability to travel freely leads to feelings of isolation and loneliness. Loneliness interventions often use mediated environments to improve the feeling of connectedness. It has been proven that the utilization of haptic technologies enhances realism and the sense of presence in both virtual environments and telepresence in physical places by allowing the user to experience interaction through the sense of touch. However, the technology application is mostly limited to the experiences of serious games in professional environments and for-entertainment-gaming. This project aims to explore how haptic technologies can support the storytelling of semi-scripted experiences in VR to improve participants’ sense of presence and, therefore, the feeling of connectedness. By designing and prototyping the experience, the project aims to obtain insights and offer a better understanding of designing haptic-technology-supported storytelling and its potential to improve connectedness and become a useful tool in isolation interventions. The project will be conducted through the process of participants’ co-creation.