Social robots have been introduced in different fields such as retail, health care and education. Primary education in the Netherlands (and elsewhere) recently faced new challenges because of the COVID-19 pandemic, lockdowns and quarantines including students falling behind and teachers burdened with high workloads. Together with two Dutch municipalities and nine primary schools we are exploring the long-term use of social robots to study how social robots might support teachers in primary education, with a focus on mathematics education. This paper presents an explorative study to define requirements for a social robot math tutor. Multiple focus groups were held with the two main stakeholders, namely teachers and students. During the focus groups the aim was 1) to understand the current situation of mathematics education in the upper primary school level, 2) to identify the problems that teachers and students encounter in mathematics education, and 3) to identify opportunities for deploying a social robot math tutor in primary education from the perspective of both the teachers and students. The results inform the development of social robots and opportunities for pedagogical methods used in math teaching, child-robot interaction and potential support for teachers in the classroom
This feasibility report aims to create a solid background for Savings Groups programming in Italy, Spain, Germany, Poland and the Netherlands where partner organisations of the LETS SAVEE1 project are based. This Erasmus+ funded project aims at exploring the potential of saving groups in the European countries’ context, by improving entrepreneurial skills and access to financial services and social networks of diverse target groups. This particular report provides the partner organisation as well as other interested implementing organisations with a better understanding of how the different contexts influences the setting up and/or scale up of saving groups. This report is set up as follows: The market potential is based on literature of societal developments and how they can be linked to the emergence of saving groups in the respective countries and what kind of target groups have potential for benefitting the services offered by savings groups. By mapping partner organisations, the feasibility study identifies present and potential partners and stakeholders which could play an essential role reaching out to target groups. Then, the study will inform partner organisations and other implementers about the legal framework in each country that allows them to set up Savings Groups accordingly and identify issues that might need advocacy actions. Finally, this report provides a mapping of risk factors and ways to mitigate risks for savings groups members that were applicable for all partner organizations.
This paper reports on a case study into reciprocal learning in two tutor groups as part of a master's degree programme in special education. Reciprocal learning means that all members of the group, both students and teachers, learn from each other; however, the question is how and to what extent can reciprocal learning take shape, especially in an educational setting where the actors have different responsibilities. Data were gathered using a combination of methods and more than one source (triangulation) and a member check was performed on the whole cohort. The respondents reported that reciprocal learning in the tutor groups can improve the quality of learning for all participants. The extent to which this occurred appeared to be dependent on the expectations they had beforehand or the expectations they developed during the course of the research project. It is reasonable to assume, therefore, that paying explicit attention to reciprocal learning can have positive benefits for the quality of a course.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.