This paper aims to quantify the cumulative damage of unreinforced masonry (URM) subjected to induced seismicity. A numerical model based on discrete element method (DEM) has been develop and was able to represented masonry wall panels with and without openings; which are common typologies of domestic houses in the Groningen gas field in the Netherlands. Within DEM, masonry units were represented as a series of discrete blocks bonded together with zero-thickness interfaces, representing mortar, which can open and close according to the stresses applied on them. Initially, the numerical model has been validated against the experimental data reported in the literature. It was assumed that the bricks would exhibit linear stress-strain behaviour and that opening and slip along the mortar joints would be the predominant failure mechanism. Then, accumulated damage within the seismic response of the masonry walls investigated by means of harmonic load excitations representative of the acceleration time histories recorded during induced seismicity events that occurred in Groningen, the Netherlands.
DOCUMENT
Existing unreinforced masonry buildings in seismically active regions are in urgent need of consolidation and preservation against seismic action to prevent damage and loss of financial resources. In this research, an experimental study of externally confined brick masonry piers, which are frequently preferred as load-bearing elements in historical buildings, was conducted. The confinement system included a combination of open-grid basalt textile and mortar. Eighteen masonry pier specimens were produced using solid bricks collected from a historical building constructed in approximately the 1930s and a local mortar with substandard mechanical characteristics to simulate mortar properties in existing heritage buildings. All the square/rectangular pier specimens were tested under concentric compressive loads. In general, confinement of the tested textile-reinforced mortar (TRM) improved the energy dissipation of the masonry piers significantly. A comparison was made between the experimental results and theoretical predictions using the available analytical models. The compressive strengths predicted by the models are satisfactory.
LINK
Out-of-plane (OOP) wall collapse is one of the most common failure mechanismsin unreinforced masonry (URM) structures. Insufficient connections at wall-to-wall, wall-to-floor or wall-to-roof levels are one of the main reasons for OOP failures. The seismic assessment of URM buildings with insufficient connections became of high relevance. In particular, cavity walls are widely used in many regions, such as Central and Northern Europe, Australia, New Zealand, China, and Groningen in the Netherlands. Defining thus the behaviour of such connections is of prime importance to understand the overall response of URM buildings.This paper is about an experimental campaign conducted at the BuildinG laboratory of Hanze University of Applied Sciences on timber joist-masonry connections, reproducing cavity walls with timber joists in as-built condition. A total of six URM tests were performed, with varying configurations as: two different tie distributions, two precompression levels and two different as-built connections. The tests aim at providing a complete characterization of the behaviour of the timber-joist cavity-wall connections under axial cyclic loading with special attention on the developed failure mechanism and the definition of force-displacement curves for each group of tests performed. The experimental results show that cohesion and friction between joist and masonry are important parameters in terms of the governing failure mechanism, whether it is a joist-sliding or rocking failure.
DOCUMENT
In recent years, the number of human-induced earthquakes in Groningen, a large gas field in the north of the Netherlands, has increased. The majority of the buildings are built by using unreinforced masonry (URM), most of which consists of cavity (i.e. two-leaf) walls, and were not designed to withstand earthquakes. Efforts to define, test and standardize the metal ties, which do play an important role, are valuable also from the wider construction industry point of view. The presented study exhibits findings on the behavior of the metal tie connections between the masonry leaves often used in Dutch construction practice, but also elsewhere around the world. An experimental campaign has been carried out at Delft University of Technology to provide a complete characterization of the axial behavior of traditional connections in cavity walls. A large number of variations was considered in this research: two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including monotonic and cyclic loading. The experimental results showed that the capacity of the connection was strongly influenced by the embedment length and the geometry of the tie, whereas the applied pre-compression and the loading rate did not have a significant influence.
DOCUMENT
The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is a relevant issue in many countries, such as in Central and Northern Europe, Australia, New Zealand, China and several other countries. A cavity wall consists of two separate parallel masonry walls (called leaves) connected by metal ties: an inner loadbearing wall and an outer veneer having mostly aesthetic and insulating functions. Cavity walls are particularly vulnerable structural elements. If the two leaves of the cavity wall are not properly connected, their out-of-plane strength may be significantly smaller than that of an equivalent solid wall with the same thickness.The research presented in this paper focuses on a mechanical model developed to predict the failure mode and the strength capacity of metal tie connections in masonry cavity walls. The model considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. Tie failure is a predictable quantity when the possible failure modes can be captured. The mechanical model for the ties has been validated against the outcomes of an experimental campaign conducted earlier by the authors. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. The mechanical model can be easily adopted by practising engineers who aim to model the wall ties accurately in order to assess the strength and behaviour of the structures against earthquakes. Furthermore, the proposed mechanical model is used to extrapolate the experimental results to untested configurations, by performing parametric analyses on key parameters including a higher strength mortar of the calcium silicate brick masonry, a different cavity depth, a different tie embedment depth, and solid versus perforated clay bricks.
DOCUMENT
This paper aims to quantify the evolution of damage in masonry walls under induced seismicity. A damage index equation, which is a function of the evolution of shear slippage and opening of the mortar joints, as well as of the drift ratio of masonry walls, was proposed herein. Initially, a dataset of experimental tests from in-plane quasi-static and cyclic tests on masonry walls was considered. The experimentally obtained crack patterns were investigated and their correlation with damage propagation was studied. Using a software based on the Distinct Element Method, a numerical model was developed and validated against full-scale experimental tests obtained from the literature. Wall panels representing common typologies of house façades of unreinforced masonry buildings in Northern Europe i.e. near the Groningen gas field in the Netherlands, were numerically investigated. The accumulated damage within the seismic response of the masonry walls was investigated by means of representative harmonic load excitations and an incremental dynamic analysis based on induced seismicity records from Groningen region. The ability of this index to capture different damage situations is demonstrated. The proposed methodology could also be applied to quantify damage and accumulation in masonry during strong earthquakes and aftershocks too.
DOCUMENT
Masonry structures comprise a significant portion of the historical building stock all over the world. Previousstudies have clearly pointed out that unreinforced masonry buildings are vulnerable against extreme loadingconditions, such as seismic actions. Therefore, strengthening is inevitable in most cases for historical masonry towithstand severe loads. In this paper, the efficiency of fabric reinforced cementitious matrix is investigatedexperimentally by using diagonal tension tests. Fourteen wallets with a nominal size of 750x750x235 mm wereproduced with using solid clay bricks and a low-strength mortar. The bricks were collected from the structuralwalls of an early-20th century building under restoration. The low-strength mortar represents the historicalmortar commonly used in similar historical brick masonry buildings located in Istanbul, Turkey. By testing thespecimens under monotonic diagonal compression loads, the effects of different types of plasters on the walletsurface, varying types of fibers used in textile reinforcement and anchors used for the connection between FRCMand substrate are investigated. Although the wallet samples have inherent shortcomings in representing overallcomponent response accurately, still the qualitative findings are enlightening the effectiveness of the FRCMsystem by increasing shear strength, stiffness (shear modulus) and dissipated energy of the masonry wallets. Thestrengthened specimens were failed due to shear sliding along a bed joint and/or by a stair-shaped separationwhile the refence specimens were failed due to the splitting of the specimen into two parts in the stair-steppedshape and a slipping through a bed joint.
LINK
The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is of high relevance in regions such as in Central and Northern Europe, Australia, New Zealand and China because of the characteristics of the masonry building stock. A cavity wall consists of two separate parallel walls usually connected by metal ties. Cavity walls are particularly vulnerable to earthquakes, as the out-of-plane capacity of each individual leaf is significantly smaller than the one of an equivalent solid wall. This paper presents the results of an experimental campaign conducted by the authors on metal wall tie connections and proposes a mechanical model to predict the cyclic behaviour of these connections. The model has been calibrated by us- ing the experimental results in terms of observed failure modes and force-displacement responses. Results are also presented in statistical format.
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT
The seismic assessment of the out-of-plane (OOP) behaviour of unreinforced masonry (URM) buildings is essential since the OOP is one of the primary collapse mechanisms in URM buildings. It is influenced by several parameters, including the poor connections between structural elements, a weakness highlighted by post-earthquake observations. The paper presents a mechanical model designed to predict the contributions of various resisting mechanisms to the strength capacity of timber-joist connections in masonry cavity walls. The research presented in this paper considers two different failure modes: joist-wall interface failure, and OOP rocking behaviour of the URM walls. Consequently, two mechanical models are introduced to examine these failure modes in timber-joist connections within masonry cavity walls. One model focuses on the joist-wall interface failure, adopting a Coulomb friction model for joist-sliding further extended to incorporate the arching effect. The other model investigates the OOP rocking failure mode of walls. The combined mechanical model has been validated against the outcomes of an earlier experimental campaign conducted by the authors. The considered model can accurately predict the peak capacity of the joist connection and successfully defines the contribution of each mechanism in terms of resistance at failure.
DOCUMENT