Green spaces play an important role in urban areas. We study the accessibility of green urban areas by combining open data sets about green with population size data. We develop a mathematical model to define the population density of a green area and calculate the available green space depending on the location. To this end, we do not only consider walking distance to and size of the green area, but also take into account the local population size. Our model quantifies how the available green space depends on the location in the city, such that heavily populated areas have a small amount of green available, even when closely located to a green area.
DOCUMENT
Due to climate change the frequency of extreme precipitation increases. To reduce the risk of damage by flooding, municipalities will need to retrofit urban areas in a climate-resilient way. To justify this investment, they need insight in possibilities and costs of climate-resilient urban street designs. This chapter focused on how to retrofit characteristic (Dutch) typologies of urban residential areas. For ten cases alternative street layouts were designed with a determination of the life cycle costs and benefits. All designs are resilient to extreme rain events. The results show that most flat urban typologies can easily be retrofitted in a climate-resilient way without additional costs compared to the standard way of retrofitting. Climate proofing sloping areas are highly dependent on the situation downstream. When there is no space downstream to divert the water into waterways or parks, costs to provide storage easily rise above traditional levels for retrofitting. In addition to reducing flood risk, for each case one variant includes resilience to extreme heat events making use of green. The life cycle costs and benefits of the green variants showed that especially green designs in high-density urban areas result in a better value for money.
MULTIFILE
One of the goals for the JPI Water funded project INovations for eXtreme Climatic Events (INXCES) is to provide risk assessment tools for urban hydro-climatic events. Combining disciplines increases the capacity to manage and improve the mitigation of the infrastructure for stormwater in urban areas. INXCES is an European collaboration among the cites Bergen, NO, Groningen, NL, Bucharest, RO, and Luleå, SE.In urban areas infrastructure, such as sewage and drainage systems, is installed in the subsurface to cope with surface water and stormwater runoff. However, the natural patterns are preferred hence human effort. A flood model using Digital Elevation Model (DEM) show the flow patterns of stormwater and areas exposed to flooding. Combining mapping of natural flow paths and floodmodelling, areas prone to flooding is accentuated. The subsurface infrastructure in these prone areas are exposed to larger quantities of water during heavy rainfall events, which is becoming more frequent due to climate change. Results from this interdisciplinary study, will give the water and wastewater authority a risk assessment to pinpoint areas where water infrastructure is more exposedto failure, clogging and damages. Furthermore, we argue that areas that are prone to repeated flooding are more exposed for subsidence in the ground. Larger movement in the ground will cause damage to the infrastructure, such ascracking of pipelines and damage to buildings, roads etc. By combining results mentioned above with subsidence data (InSAR date collected from Satellites), a risk assessment map can show areas to prioritize. Subsurface measures such as SUDS (Sustainable Urban Drainage Systems) can be a resilient solution to a recurrent problem in an urban area, as a remediation to flooding (and drought)and as stabilisation of ground conditions.
DOCUMENT
Urban flooding and thermal stress have become key issues formany cities around the world. With the continuing effects of climatechange, these two issues will become more acute and will add to theserious problems already experienced in dense urban areas. Therefore, thesectors of public health and disaster management are in the need of toolsthat can assess the vulnerability to floods and thermal stress. The presentpaper deals with the combination of innovative tools to address thischallenge. Three cities in different climatic regions with various urbancontexts have been selected as the pilot areas to demonstrate these tools.These cities are Tainan (Taiwan), Ayutthaya (Thailand) and Groningen(Netherlands). For these cities, flood maps and heat stress maps weredeveloped and used for the comparison analysis. The flood maps producedindicate vulnerable low-lying areas, whereas thermal stress maps indicateopen, unshaded areas where high Physiological Equivalent Temperature(PET) values (thermal comfort) can be expected. The work to dateindicates the potential of combining two different kinds of maps to identifyand analyse the problem areas. These maps could be further improved andused by urban planners and other stakeholders to assess the resilience andwell-being of cities. The work presented shows that the combined analysisof such maps also has a strong potential to be used for the analysis of otherchallenges in urban dense areas such as air and water pollution, immobilityand noise disturbance.
DOCUMENT
In the Netherlands municipalities are searching for guidelines for a heat resilient design of the urban space. One of the guidelines which has recently been picked up is that each house should be within a 300 meter of an attractive cool spot outside. The reason is that houses might get too hot during a heat wave and therefor it is important that inhabitants have an alternative place to go. The distance of 300 m has been adopted because of practical reasons. This guideline has been proposed after a research of the University of Amsterdam of applied sciences and TAUW together with 15 municipalities.To help municipalities to take cool spots into account in their urban design the national organization for disseminating climate data has developed a distance to coolness map for all Dutch built up areas. This map shows the cool spots with a minimum of 200 m2 based on a map of the PET for a hot summer day (2*2 m2 spatial resolution). Furthermore the map shows the walking distance for each house (via streets and foot paths) to the nearest cool spot.This map helps as a starting point. Because not all cool spots are attractive cool spots. A research in 2021 showed what further basis and optional characteristics those cool spots should have: e.g. sufficiently large, combination of sun and shadow, benches, quiet, safe and clean. In fact those places should be attractive places to stay for most days of the year.With the distance to attractive cool spots municipalities can easily see which areas lack attractive cool spots. The distance to cool spot maps is therefore a way to simplify complex climate data into an understandable and practical guideline. This is an improvement as compared to using thresholds for temperatures and thresholds for duration of exceedance of those temperatures in a guideline.: Municipalities like this practical approach that combines climate adaptation with improving the livability of a city throughout the year.
DOCUMENT
Due to climate change the frequency of extreme precipitation is set to increase. To reduce the risk of damage, Dutch municipalities will need to retrofit the urban areas in a climate resilient (CR) way. To justify this investment, they need evidence for the possibilities of CR urban street designs and insight into the costs. For characteristic Dutch typologies of urban residential areas we have investigated how to retrofit the urban area. For 10 cases we designed alternatives of street lay-outs and determined the life cycle costs and benefits. This showed that most flat Dutch urban typologies can easily be retrofitted in a CR way without additional costs (compared to the standard designs).
DOCUMENT
Rapid changes in the urban environment due to growth puts the urban water cycle out of balance, hence, affecting other surface and subsurface processes, such as subsidence and surface water management.Subsidence of the ground is causing risk and hazard, as well as unexpected costs. This newly, November 2018, launched tool InSARNorge is Open Access and part of the Copernicus program.In a recent study (Venvik et al. submitted) datasets from InSAR satellites showing subsidence are combined with data from flood modelling in two different analytical methods using ArcGIS tools to develop a risk assessment map for areas most prone to the combination of both flooding and subsidence. Applying usercentred principles, this work focuses on methods for risk assessment maps as a support tool to locate areas where mitigation of subsidence and adaptation for surface water management will be most efficient and measures can be implemented. The results of the methods for risk assessment maps show that one of the methods give significant results compared to the other method. Such method will be a helpful tool for decision-makers when prioritizing areas for measures such as Sustainable urban Drainage Systems (SuDS).The study is related to the JPI Water funded project INXCES (www.inxces.eu).
DOCUMENT
What is this publication about?In this publication on ‘New urban economies’, we search for answers and insights to a key question: how can cities foster economic development and develop ‘new urban economies’. And, importantly, how can they do that:◗ in concertation with different urban stakeholders, ◗ responding adequately to key challenges and developments beyond their control, ◗ building on the cities’ own identity, industries and competences, ◗ in a sustainable way, ◗ and without compromising weaker groups.
DOCUMENT
This guide has been designed to measure and manage the impact of social events in urban areas. Our aim is to facilitate (event) organizers who would like to give a in depth justification for their work on enhancing social and sustainable (local) communities. These events tend to be small-scale cultural events within urban neighbourhoods. Neighbourhoods can differ enormously in terms of their social, cultural, geographical, demographical and economical perspectives and this has to be taken into account when carrying out an impact study. There are many ways to measure impact. We have compiled this guide and toolkit from existing models, methods and additional insights based upon our own research experiences. We wanted to make a measurement instrument that is tailor-made for the specific context of social events and urban communities. For that reason, we will now give some background information about urban challenges, the role of social-cultural events in confronting these urban challenges and about event management and its possible social benefits and costs.
DOCUMENT
In opdracht van het ministerie van Binnenlandse Zaken en Koninkrijksrelaties heeft het lectoraat Changing Role of Europe van De Haagse Hogeschool de rol van de Dutch Urban Envoy geëvalueerd. De betekenis, de inzet, het vervolg en de toekomstige invulling van de rol van de Dutch Urban Envoy komen aan bod. Op basis van de inzichten van 37 interviews met 39 betrokken partijen (van het Ministerie van BZK, Nederlandse steden, Europese steden, koepelorganisaties, Europese instellingen en andere ministeries binnen de Rijksoverheid) en deskresearch zijn de volgende conclusies en aanbevelingen geformuleerd.
DOCUMENT