Het doel van dit project was om samen met alle betrokkenen te komen tot een gedragen adviesprogrammering voor het urban sportpark Zuilense Vecht, dat ligt op de gemeentegrenzen van Utrecht en Stichtse Vecht. Allereerst zijn geleerde lessen opgemaakt naar aanleiding van interviews met professionals die betrokken waren bij andere urban sportparken. Deze lessen zijn meegenomen naar het vervolg van dit project, waarbij we hebben gewerkt aan een adviesprogrammering in co-design met alle betrokkenen (sport- en welzijnsprofessionals uit de wijken, professionals uit urban sports en de MBO sportacademie; én kinderen en jongeren zelf).
DOCUMENT
from the article: Abstract Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it is multidimensional in character, is assessed largely in subjective terms and varies across time. The paper explores three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’ and illustrates the dilemmas that urban planners face in answering these questions. The three questions provide a novel framework that offers urban planners perspectives for action in finding their way out of the dilemmas identified. Rather than further detailing the exact nature of urban quality, these perspectives call for an approach to urban planning that is integrated, participative and adaptive. ; ; sustainable urban development; trade-offs; quality dimensions
DOCUMENT
Purpose: The authors provide a personal insight into how they see the potential of urban culture as a vehicle for creative placemaking. The purpose of this study is to highlight the opportunities for the tourism industry to embrace this global youth culture now that one of its pillars, breakdance, is on the brink of becoming an Olympic discipline in 2024, thus nudging this youth culture from underground to mainstream. Design/methodology/approach: The authors interviewed two Dutch pioneers in the field of urban culture: Tyrone van der Meer, founder of The Notorious IBE (IBE), an international breaking event, and Angelo Martinus, founder of the urban scene in Eindhoven and initiator of EMOVES, an urban culture and sports event. Findings: The authors illustrate the added value of urban culture to creative placemaking by addressing the initiatives of previously mentioned Dutch pioneers. Their urban culture events on Dutch soil, yearly attract thousands of participants and visitors from the urban scene, covering over 40 nationalities, to the South of The Netherlands. Originality/value: This study provides a glimpse into a global youth culture that is primarily invisible to the tourism industry and a foresight in how the tourism industry and other stakeholders (e.g. policy makers, city marketeers, tourism managers and event organisers) can pick up on this evolving trend. The study is meant as a wake-up call.
MULTIFILE
The CARTS (Collaborative Aerial Robotic Team for Safety and Security) project aims to improve autonomous firefighting operations through an collaborative drone system. The system combines a sensing drone optimized for patrolling and fire detection with an action drone equipped for fire suppression. While current urban safety operations rely on manually operated drones that face significant limitations in speed, accessibility, and coordination, CARTS addresses these challenges by creating a system that enhances operational efficiency through minimal human intervention, while building on previous research with the IFFS drone project. This feasibility study focuses on developing effective coordination between the sensing and action drones, implementing fire detection and localization algorithms, and establishing parameters for autonomous flight planning. Through this innovative collaborative drone approach, we aim to significantly improve both fire detection and suppression capabilities. A critical aspect of the project involves ensuring reliable and safe operation under various environmental conditions. This feasibility study aims to explore the potential of a sensing drone with detection capabilities while investigating coordination mechanisms between the sensing and action drones. We will examine autonomous flight planning approaches and test initial prototypes in controlled environments to assess technical feasibility and safety considerations. If successful, this exploratory work will provide valuable insights for future research into autonomous collaborative drone systems, currently focused on firefighting. This could lead to larger follow-up projects expanding the concept to other safety and security applications.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Dit project heeft tot doel het ontwerp en de exploitatie van lokale energiesystemen te verbeteren voor buurten met een hoge zelfvoorziening en een hoge betrokkenheid van alle betrokken belanghebbenden. In dit project wordt een integrale aanpak toegepast door zowel technische als sociale aspecten mee te nemen.