Post-war urban neighbourhoods in industrialised countries have been shown to negatively affect the lifestyles of their residents due to their design. This study aims at developing an empirical procedure to select locations to be redesigned and the determinants of health at stake in these locations, with involvement of residents’ perspectives as core issue. We addressed a post-war neighbourhood in the city of Groningen, the Netherlands. We collected data from three perspectives: spatial analyses by urban designers, interviews with experts in local health and social care (n = 11) and online questionnaires filled in by residents (n = 99). These data provided input for the selection of locations to be redesigned by a multidisciplinary team (n = 16). The procedure yielded the following types of locations (and determinants): An area adjacent to a central shopping mall (social interaction, traffic safety, physical activity), a park (experiencing green, physical activity, social safety, social interaction) and a block of low-rise row houses around a public square (social safety, social interaction, traffic safety). We developed an empirical procedure for the selection of locations and determinants to be addressed, with addressing residents’ perspectives. This procedure is potentially applicable to similar neighbourhoods internationally.
MULTIFILE
Conflict lies at the core of urban sustainability transitions and the indispensable structural changes that accompany them. In this chapter we examine the RESILIO project, a multi-actor collaboration in Amsterdam aiming to transition towards a 'climate proof' city through smart water retention systems on urban roofs. The focus is on the conflict that emerged during discussions about controlling the smart valves on the rooftops which are designed to prevent urban flooding. Using a discourse analytical framework, the study analyses participant interactions, conflicting positions, and discursive strategies employed by the partners involved in the initiative. Participants utilised several discursive strategies, including identity, stake, and accountability management, to manage their positions in the conflict and influence the discourse. The study highlights the challenges of addressing conflict that involves redefining accountability and responsibility between public and private actors in the collaborative setting of transition initiatives. By doing so the findings contribute to a deeper understanding of how conflict can shape learning processes and foster sustainable urban transitions.
This paper examines a co-production arrangement between private actors, households, and community actors occurring within the framework of scheme of commercialised spring water in peri-urban Bandung, Indonesia. We argue that the provision of spring water in Ujungberung District is a form of co-production, characterised by: (1) any one, or the elements, of the service production process being shared; (2) the presence of a fundamental shift in the balance of power between the primary producers and users/communities, and (3) the existence of mutual support and relationship networks, rather than a clearly defined delineation between providers and clients. Actor contributions defined as inputs along the value chain of spring water production were examined. We describe interactions between local private actors and community members in planning, service delivery, and conflict management with respect to disruption of water supplies, free-riding behaviour, and the geographical distribution of services. This paper identifies several institutional innovations that may yield a safer and more affordable water supply and nurture equity in the sense of: (1) improved access to water for the previously unserved people by piped water and boreholes; (2) the opportunity to negotiate from below; and (3) transparency and accountability.
LINK
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.
Cities: Action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment Recurring droughts severely impacted the Dutch built Environment , causing financial, environmental, and social effects. Climate change and urban developments are expected to aggravate this. Although municipalities recognize drought as critical risk, few have prepared for it. This is due to a lack of understanding of the urban water balance under drought and the vulnerability of urban water use(r)s, ambiguity in role and responsibility, and missing action-perspectives. Thirsty Cities aims to address this by developing, collecting, connecting and delivering in a transdisciplinary approach the needed knowledge, insights, tooling, principles, designs, infrastructures and action-perspectives for a climate-proof, drought-resilient, and water-sensitive built environment.Dorstige Steden: Handelingsperspectieven voor een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving.De Nederlandse bebouwde omgeving is herhaaldelijk geraakt door droogte, met financiële, ecologische en maatschappelijke effecten. Klimaatverandering en stedelijke ontwikkelingen zullen het droogte-risico naar verwachting doen toenemen. Alhoewel overheden droogte als een risico erkennen, hebben weinigen zich daarop voorbereid. Gebrek aan inzicht in de stedelijke waterbalans onder droogte, de kwetsbaarheid van stedelijke watergebruikers, onduidelijkheid in rol en verantwoordelijkheid van betrokken actoren, en ontbrekende handelingsperspectieven liggen hieraan ten grondslag. ‘Dorstige Steden’ draagt middels trans-disciplinair onderzoek bij aan een klimaatbestendige, droogteweerbare, en waterrobuuste bebouwde omgeving door de benodigde kennis, inzichten, instrumentaria, principes en ontwerpen te ontwikkelen, verzamelen en verbinden en handelingsperspectieven te formuleren.