Real-time location systems (RTLS) can be implemented in aged care for monitoring persons with wandering behaviour and asset management. RTLS can help retrieve personal items and assistive technologies that when lost or misplaced may have serious financial, economic and practical implications. Various ethical questions arise during the design and implementation phases of RTLS. This study investigates the perspectives of various stakeholders on ethical questions regarding the use of RTLS for asset management in nursing homes. Three focus group sessions were conducted concerning the needs and wishes of (1) care professionals; (2) residents and their relatives; and (3) researchers and representatives of small and medium-sized enterprises (SMEs). The sessions were transcribed and analysed through a process of open, axial and selective coding. Ethical perspectives concerned the design of the system, the possibilities and functionalities of tracking, monitoring in general and the user-friendliness of the system. In addition, ethical concerns were expressed about security and responsibilities. The ethical perspectives differed per focus group. Aspects of privacy, the benefit of reduced search times, trust, responsibility, security and well-being were raised. The main focus of the carers and residents was on a reduced burden and privacy, whereas the SMEs stressed the potential for improving products and services. Original article at MDPI: https://doi.org/10.3390/info9040080
MULTIFILE
We need look no further than the use of email communication, mobile phones and cars to understand that technology has wide-ranging social consequences. What is more, designers are plainly not always aware of the social consequences of technology, despite practicing user-centred design. Email, for instance, was developed as an efficient mode of communication between two actors. As we all know, the introduction of email has fundamentally changed traditional business and office practices. These side effects were not identified until long after email was introduced. During recent years, designers have grown increasingly interested in these social aspects. Modern information technology, in particular, creates extensive possibilities to influence social behaviour. Persuasive technology has been developed to increase, e.g., environmental friendliness. Once a designer aims at defined social changes, the consequences of technology for practices become a responsibility, too. The present research is aimed at providing tools and methods to anticipate social consequences at an earlier stage of the design process. These consequences of technologies in social environments will be called social impacts. In order to be a meaningful concept for designers the characteristics of a particular technology that are responsible for social impacts must be identified. Social consequences of technologies have not been observed very thoroughly from a user-centred design point of view. Therefore, this thesis is aimed, not only at gaining knowledge about social impact, but also translating these insights into workable instruments for designers. This leads to the following research questions:1. What relations can be identified between social impacts and characteristics oftechnologies?2. How can a designer anticipate social impact?3. How can social impact be managed in design environments?
Airports have undergone a significant digital evolution over the past decades, enhancing efficiency, effectiveness, and user-friendliness through various technological advancements. Initially, airports deployed basic IT solutions as support tools, but with the increasing integration of digital systems, understanding the detailed digital ecosystem behind airports has become crucial. This research aims to classify technological maturity in airports, using the access control process as an example to demonstrate the benefits of the proposed taxonomy. The study highlights the current digital ecosystem and its future trends and challenges, emphasizing the importance of distinguishing between different levels of technological maturity. The role of biometric technology in security access control is examined, highlighting the importance of proper identification and classification. Future research could explore data collection, privacy, and cybersecurity impacts, particularly regarding biometric technologies in Smart Access Level 4.0. The transition from Smart Access Level 3.0 to 4.0 involves process automation and the introduction of AI, offering opportunities to increase efficiency and improve detection capabilities through advanced data analytics. The study underscores the need for global legislative frameworks to regulate and support these technological advancements.
New innovative methods to determine the DNA sequences of different bacterial species are rising. In the field of microbiology, these methods are very important since it is now possible to determine all the genetic characteristics of the bacterium in one step! This enables to define e.g. the species family, drug resistance or relatedness to other bacteria in outbreak evaluations which is necessary to efficiently treat the bacteria or target potential outbreaks. For many years, PCR-based methods have been the technique of choice to determine DNA sequences (including next-generation sequencing techniques). Recently, a new technique has been introduced to the market that is based on single molecule real-time sequencing (SMRT) with the possibility to determine the DNA sequence of a bacterium. This SMRT MinION sequencing technique is housed on an USB stick and is known for its user-friendliness and huge data output. However, before such a new technique can be implemented and presented in laboratories and used for educational purposes, methods should be harmonized and evaluated to proof its applicability. Harmonisation of the methodology regarding new laboratory techniques is very important to be able to compare results generated by different laboratories. A single consistent protocol, applied in each lab, is essential to obtain the best results in interlaboratory comparisons. During this KIEM-hbo project, we – i.e. Avans UAS, Maastricht University Medical Center and the company IS-diagnostics – will determine the DNA sequence of bacterial species and mixes thereof with a harmonized protocol for an interlaboratory comparison. We will compare this technique to the IS-PRO, an existing technology. Finally a workshop will be organized for medical technicians and other SMRT sequencing users to evaluate the protocols. This will, generate an up-to-date and harmonized sequencing protocol which can be expanded to future research and diagnostics in the different areas.