Several models in data analysis are estimated by minimizing the objective function defined as the residual sum of squares between the model and the data. A necessary and sufficient condition for the existence of a least squares estimator is that the objective function attains its infimum at a unique point. It is shown that the objective function for Parafac-2 need not attain its infimum, and that of DEDICOM, constrained Parafac-2, and, under a weak assumption, SCA and Dynamals do attain their infimum. Furthermore, the sequence of parameter vectors, generated by an alternating least squares algorithm, converges if it decreases the objective function to its infimum which is attained at one or finitely many points.
LINK
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.
MULTIFILE