The primary aims of this study were (1) to evaluate whole-body mechanical efficiency (ME) in a large group of chronic obstructive pulmonary disease (COPD) patients with a wide range of degrees of illness and (2) to examine how ME in COPD is related to absolute work rate and indices of disease severity during exercise testing. A total of 569 patients (301 male patients; GOLD stage I: 28, GOLD stage II: 166, GOLD stage III: 265, and GOLD stage IV: 110) with chronic obstructive pulmonary disease (COPD) were included in the data analysis. Individual maximal workload (watt), peak minute ventilation ((Equation is included in full-text article.)E, L/min body temperature and pressure, saturated), and peak oxygen uptake ((Equation is included in full-text article.)O2, mL/min standard temperature and pressure, dry) were determined from a maximal incremental cycle ergometer test. Ventilatory and metabolic response parameters were collected during a constant work rate test at 75% of the individual maximal workload. From the exercise responses of the constant work rate test, the gross ME was calculated. The mean whole-body gross ME was 11.0 ± 3.5% at 75% peak power. The ME declined significantly (P < .001) with increasing severity of the disease when measured at the same relative power. Log-transformed absolute work rate (r = .87, P < .001) was the strongest independent predictor of gross ME. Body mass was the single other variable that contributed significantly to the linear regression model. Gross ME in COPD was largely predicted by the absolute work rate (r = .87; P < .001) while indices of the severity of the disease did not predict ME in COPD.
DOCUMENT
Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population. There is growing interest of MI-E use in invasively ventilated critically ill adults. We aimed to map current evidence on MI-E use in invasively ventilated critically ill adults. Two authors independently searched electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform; PROSPERO; Cochrane Library; ISI Web of Science; and International Clinical Trials Registry Platform between January 1990–April 2021. Inclusion criteria were (1) adult critically ill invasively ventilated subjects, (2) use of MI-E, (3) study design with original data, and (4) published from 1990 onward. Data were extracted by 2 authors independently using a bespoke extraction form. We used Mixed Methods Appraisal Tool to appraise risk of bias. Theoretical Domains Framework was used to interpret qualitative data. Of 3,090 citations identified, 28 citations were taken forward for data extraction. Main indications for MI-E use during invasive ventilation were presence of secretions and mucus plugging (13/28, 46%). Perceived contraindications related to use of high levels of positive pressure (18/28, 68%). Protocolized MI-E settings with a pressure of ±40 cm H2O were most commonly used, with detail on timing, flow, and frequency of prescription infrequently reported. Various outcomes were re-intubation rate, wet sputum weight, and pulmonary mechanics. Only 3 studies reported the occurrence of adverse events. From qualitative data, the main barrier to MI-E use in this subject group was lack of knowledge and skills. We concluded that there is little consistency in how MI-E is used and reported, and therefore, recommendations about best practices are not possible.
DOCUMENT
BACKGROUND: Critically ill patients receiving invasive ventilation are at risk of sputum retention. Mechanical insufflation-exsufflation (MI-E) is a technique used to mobilise sputum and optimise airway clearance. Recently, interest has increased in the use of mechanical insufflation-exsufflation for invasively ventilated critically ill adults, but evidence for the feasibility, safety and efficacy of this treatment is sparse. The aim of this scoping review is to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated adult patients with the aim of highlighting knowledge gaps and identifying areas for future research. Specific research questions aim to identify information informing indications and contraindications to the use of MI-E in the invasively ventilated adult, MI-E settings used, outcome measures reported within studies, adverse effects reported and perceived barriers and facilitators to using MI-E reported.METHODS: We will search electronic databases MEDLINE, EMBASE, CINAHL using the OVID platform, PROSPERO, The Cochrane Library, ISI Web of Science and the International Clinical Trials Registry Platform. Two authors will independently screen citations, extract data and evaluate risk of bias using the Mixed Methods Appraisal Tool. Studies included will present original data and describe MI-E in invasively ventilated adult patients from 1990 onwards. Our exclusion criteria are studies in a paediatric population, editorial pieces or letters and animal or bench studies. Search results will be presented in a PRISMA study flow diagram. Descriptive statistics will be used to summarise quantitative data. For qualitative data relating to barriers and facilitators, we will use content analysis and the Theoretical Domains Framework (TDF) as a conceptual framework. Additional tables and relevant figures will present data addressing our research questions.DISCUSSION: Our findings will enable us to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated critically ill adult patients. These data will provide description of how the technique is currently used, support healthcare professionals in their clinical decision making and highlight areas for future research in this important clinical area.
DOCUMENT
BACKGROUND The mechanical power of ventilation (MP) has an association with outcome in invasively ventilated patients with the acute respiratory distress syndrome (ARDS). Whether a similar association exists in invasively ventilated patients without ARDS is less certain.OBJECTIVE To investigate the association of mechanical power with mortality in ICU patients without ARDS.DESIGN This was an individual patient data analysis that uses the data of three multicentre randomised trials.SETTING This study was performed in academic and nonacademic ICUs in the Netherlands.PATIENTS One thousand nine hundred and sixty-two invasively ventilated patients without ARDS were included in this analysis. The median [IQR] age was 67 [57 to 75] years, 706 (36%) were women.MAIN OUTCOME MEASURES The primary outcome was the all-cause mortality at day 28. Secondary outcomes were the all-cause mortality at day 90, and length of stay in ICU and hospital.RESULTS At day 28, 644 patients (33%) had died. Hazard ratios for mortality at day 28 were higher with an increasing MP, even when stratified for its individual components (driving pressure (P < 0.001), tidal volume (P < 0.001), respiratory rate (P < 0.001) and maximum airway pressure (P = 0.001). Similar associations of mechanical power (MP) were found with mortality at day 90, lengths of stay in ICU and hospital. Hazard ratios for mortality at day 28 were not significantly different if patients were stratified for MP, with increasing levels of each individual component.CONCLUSION In ICU patients receiving invasive ventilation for reasons other than ARDS, MP had an independent association with mortality. This finding suggests that MP holds an added predictive value over its individual components, making MP an attractive measure to monitor and possibly target in these patients.TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02159196, ClinicalTrials.gov Identifier: NCT02153294, ClinicalTrials.gov Identifier: NCT03167580.
DOCUMENT
INTRODUCTION: Mechanical Insufflation-Exsufflation (MI-E) is used as an airway clearance intervention in primary care (home ventilation), long-term care (prolonged rehabilitation after intensive care, neuromuscular diseases, and spinal cord injury), and increasingly in acute care in intensive care units (ICU).AIM: We sought to develop in-depth understanding of factors influencing decision-making processes of health care professionals regarding initiation, escalation, de-escalation, and discontinuation of MI-E for invasively ventilated patients including perceived barriers and facilitators to use.METHODS: We conducted focus groups (3 in the Netherlands; 1 with participants from four European countries) with clinicians representing the ICU interprofessional team and with variable experience of MI-E. The semi-structured interview guide was informed by the Theoretical Domains Framework (TDF). Two researchers independently coded data for directed content analysis using codes developed from the TDF.RESULTS: A purposive sample of 35 health care professionals participated. Experience varied from infrequent to several years of frequent MI-E use in different patient populations. We identified four main themes: (1) knowledge; (2) beliefs; (3) clinical decision-making; and (4) future adoption.CONCLUSION: Interprofessional knowledge and expertise of MI-E in invasively ventilated patients is limited due to minimal available evidence and adoption. Participants believed MI-E a potentially useful intervention for airway clearance and inclusion in weaning protocols when more evidence is available.RELEVANCE TO CLINICAL PRACTICE: This focus group study provides an overview of current practice, knowledge and expertise, and barriers and facilitators to using MI-E in mechanically ventilated patients. From these data, it is evident there is a need to develop further clinical expertise and evidence of efficacy to further understand the role of MI-E as an airway clearance technique for ventilated patients.
DOCUMENT
The COVID–19 pandemic led to local oxygen shortages worldwide. To gain a better understanding of oxygen consumption with different respiratory supportive therapies, we conducted an international multicenter observational study to determine the precise amount of oxygen consumption with high-flow nasal oxygen (HFNO) and with mechanical ventilation. A retrospective observational study was conducted in three intensive care units (ICUs) in the Netherlands and Spain. Patients were classified as HFNO patients or ventilated patients, according to the mode of oxygen supplementation with which a patient started. The primary endpoint was actual oxygen consumption; secondary endpoints were hourly and total oxygen consumption during the first two full calendar days. Of 275 patients, 147 started with HFNO and 128 with mechanical ventilation. Actual oxygen use was 4.9-fold higher in patients who started with HFNO than in patients who started with ventilation (median 14.2 [8.4–18.4] versus 2.9 [1.8–4.1] L/minute; mean difference 5 11.3 [95% CI 11.0–11.6] L/minute; P, 0.01). Hourly and total oxygen consumption were 4.8-fold (P, 0.01) and 4.8-fold (P, 0.01) higher. Actual oxygen consumption, hourly oxygen consumption, and total oxygen consumption are substantially higher in patients that start with HFNO compared with patients that start with mechanical ventilation. This information may help hospitals and ICUs predicting oxygen needs during high-demand periods and could guide decisions regarding the source of distribution of medical oxygen.
MULTIFILE
Introduction: Few data described practicalities of using mechanical insufflation-exsufflation (MI-E) for invasively ventilated ICU patients and evidence for benefit of their use is lacking.Aim and objective: To identify barriers and facilitators to use MI-E devices in invasively ventilated ICU patients, and to explore reasons for their use in various patient indications.Methods: Four focus group discussions; 3 national (Netherlands) and 1 with international representation, each with a purposeful interprofessional sample of a maximum 10 participants with experience in using MI-E in invasively ventilated ICU patients. We developed a semi-structured interview guide informed by the Theoretical Domain Framework. An observer was present in each session. Sessions were audio recorded and transcribed verbatim. Data were analysed using content analysis.Results: Barriers for MI-E use were lack of evidence and lack of expertise in MI-E, as well as lack of device availability within the ICU. Facilitators were experience with MI-E and perceived clinical improvement in patients with MI-E use. Common reasons to start using MI-E were difficult weaning, recurrent atelectasis and pneumonia. Main contraindications were, bullous emphysema, ARDS, high PEEP, hemodynamic instability, recent pneumothorax. There was substantial variability on used technical settings of MI-E in invasively ventilated patients.Conclusions: Key barriers and facilitators to MI-E were lack of evidence, available expertise and perceived clinical improvement. Variability on technical settings likely reflect lack of evidence. Future studies should focus on settings, safety and feasibility of MI-E in invasively ventilated patients before studies on effect can be conducted.
LINK
IntroductionMechanical power of ventilation, a summary parameter reflecting the energy transferred from the ventilator to the respiratory system, has associations with outcomes. INTELLiVENT–Adaptive Support Ventilation is an automated ventilation mode that changes ventilator settings according to algorithms that target a low work–and force of breathing. The study aims to compare mechanical power between automated ventilation by means of INTELLiVENT–Adaptive Support Ventilation and conventional ventilation in critically ill patients.Materials and methodsInternational, multicenter, randomized crossover clinical trial in patients that were expected to need invasive ventilation > 24 hours. Patients were randomly assigned to start with a 3–hour period of automated ventilation or conventional ventilation after which the alternate ventilation mode was selected. The primary outcome was mechanical power in passive and active patients; secondary outcomes included key ventilator settings and ventilatory parameters that affect mechanical power.ResultsA total of 96 patients were randomized. Median mechanical power was not different between automated and conventional ventilation (15.8 [11.5–21.0] versus 16.1 [10.9–22.6] J/min; mean difference –0.44 (95%–CI –1.17 to 0.29) J/min; P = 0.24). Subgroup analyses showed that mechanical power was lower with automated ventilation in passive patients, 16.9 [12.5–22.1] versus 19.0 [14.1–25.0] J/min; mean difference –1.76 (95%–CI –2.47 to –10.34J/min; P < 0.01), and not in active patients (14.6 [11.0–20.3] vs 14.1 [10.1–21.3] J/min; mean difference 0.81 (95%–CI –2.13 to 0.49) J/min; P = 0.23).ConclusionsIn this cohort of unselected critically ill invasively ventilated patients, automated ventilation by means of INTELLiVENT–Adaptive Support Ventilation did not reduce mechanical power. A reduction in mechanical power was only seen in passive patients.Study registrationClinicaltrials.gov (study identifier NCT04827927), April 1, 2021URL of trial registry recordhttps://clinicaltrials.gov/study/NCT04827927?term=intellipower&rank=1
MULTIFILE
BACKGROUND:Endotracheal suctioning causes discomfort, is associated with adverse effects, and is resource-demanding. An artificial secretion removal method, known as an automated cough, has been developed, which applies rapid, automated deflation, and inflation of the endotracheal tube cuff during the inspiratory phase of mechanical ventilation. This method has been evaluated in the hands of researchers but not when used by attending nurses. The aim of this study was to explore the efficacy of the method over the course of patient management as part of routine care.METHODS:This prospective, longitudinal, interventional study recruited 28 subjects who were intubated and mechanically ventilated. For a maximum of 7 d and on clinical need for endotracheal suctioning, the automatic cough procedure was applied. The subjects were placed in a pressure-regulated ventilation mode with elevated inspiratory pressure, and automated cuff deflation and inflation were performed 3 times, with this repeated if deemed necessary. Success was determined by resolution of the clinical need for suctioning as determined by the attending nurse. Adverse effects were recorded.RESULTS:A total of 84 procedures were performed. In 54% of the subjects, the artificial cough procedure was successful on > 70% of occasions, with 56% of all procedures considered successful. Ninety percent of all the procedures were performed in subjects who were spontaneously breathing and on pressure-support ventilation with peak inspiratory pressures of 20 cm H2O. Rates of adverse events were similar to those seen in the application of endotracheal suctioning.CONCLUSIONS:This study solely evaluated the efficacy of an automated artificial cough procedure, which illustrated the potential for reducing the need for endotracheal suctioning when applied by attending nurses in routine care.
DOCUMENT
Airway care interventions may prevent accumulation of airway secretions and promote their evacuation, but evidence is scarce. Interventions include heated humidification, nebulization of mucolytics and/or bronchodilators, manual hyperinflation and use of mechanical insufflation-exsufflation (MI-E). Our aim is to identify current airway care practices for invasively ventilated patients in intensive care units (ICU) in the Netherlands. A self-administered web-based survey was sent to a single pre-appointed representative of all ICUs in the Netherlands. Response rate was 85% (72 ICUs). We found substantial heterogeneity in the intensity and combinations of airway care interventions used. Most (81%) ICUs reported using heated humidification as a routine prophylactic intervention. All (100%) responding ICUs used nebulized mucolytics and/or bronchodilators; however, only 43% ICUs reported nebulization as a routine prophylactic intervention. Most (81%) ICUs used manual hyperinflation, although only initiated with a clinical indication like difficult oxygenation. Few (22%) ICUs used MI-E for invasively ventilated patients. Use was always based on the indication of insufficient cough strength or as a continuation of home use. In the Netherlands, use of routine prophylactic airway care interventions is common despite evidence of no benefit. There is an urgent need for evidence of the benefit of these interventions to inform evidence-based guidelines.
DOCUMENT