The aim of this study was to test the inter- and intraobserver reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating gait. The study involved 24 patients ages 3 to 10 years (mean age 6.7 years) with an abnormal gait caused by CP. They were all able to walk independently with or without walking aids. Of the children 15 had spastic diplegia and 9 had spastic hemiplegia. With a minimum time interval of 6 weeks, video recordings of the gait of these 24 patients were scored twice by three independent observers using the PRS and the GAIT scale. The study showed that both the GAIT scale and the PRS had excellent intraobserver reliability but poor interobserver reliability for children with CP. In the total scores of the GAIT scale and the PRS, the three observers showed systematic differences. Consequently, the authors recommend that longitudinal assessments of a patient should be done by one observer only.
LINK
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
DOCUMENT
Objective: To evaluate psychometrics of wearable devices measuring physical activity (PA) in ambulant children with gait abnormalities due to neuromuscular conditions. Data Sources: We searched PubMed, Embase, PsycINFO, CINAHL, and SPORTDiscus in March 2023. Study Selection: We included studies if (1) participants were ambulatory children (2-19y) with gait abnormalities, (2) reliability and validity were analyzed, and (3) peer-reviewed studies in the English language and full-text were available. We excluded studies of children with primarily visual conditions, behavioral diagnoses, or primarily cognitive disability. We performed independent screening and inclusion, data extraction, assessment of the data, and grading of results with 2 researchers. Data Extraction: Our report follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We assessed methodological quality with Consensus-based Standards for the selection of health measurement instruments. We extracted data on reported reliability, measurement error, and validity. We performed meta-analyses for reliability and validity coefficient values. Data Synthesis: Of 6911 studies, we included 26 with 1064 participants for meta-analysis. Results showed that wearables measuring PA in children with abnormal gait have high to very high reliability (intraclass correlation coefficient [ICC]+, test-retest reliability=0.81; 95% confidence interval [CI], 0.74-0.89; I2=88.57%; ICC+, interdevice reliability=0.99; 95% CI, 0.98-0.99; I2=71.01%) and moderate to high validity in a standardized setting (r+, construct validity=0.63; 95% CI, 0.36-0.89; I2=99.97%; r+, criterion validity=0.68; 95% CI, 0.57-0.79; I2=98.70%; r+, criterion validity cutoff point based=0.69; 95% CI, 0.58-0.80; I2=87.02%). The methodological quality of all studies included in the meta-analysis was moderate. Conclusions: There was high to very high reliability and moderate to high validity for wearables measuring PA in children with abnormal gait, primarily due to neurological conditions. Clinicians should be aware that several moderating factors can influence an assessment.
DOCUMENT