Seven college lecturers and two senior support staff were interviewed during 2021 about their experiences teaching in hybrid virtual classrooms (HVC). These technology-rich learning environments allow teachers to simultaneously teach students who are in class (on campus) and students who are joining remotely (online). There were two reasons for this choice: first, ongoing experimentation from innovative teaching staff who were already using this format before the COVID-19 pandemic; secondly, as a possible solution to restrictions on classroom size imposed by the pandemic. Challenges lecturers faced include adjusting teaching practice and lesson delivery to serve students in the class and those online equally; engaging and linking the different student groups in structured and natural interactions; overcoming technical challenges regarding audio and visual equipment; suitably configuring teaching spaces and having sufficient pedagogical and technical support to manage this complex process. A set of practical suggestions is provided. Lecturers should make reasoned choices when teaching in this format since it requires continued experimentation and practice to enhance the teaching and learning opportunities. When external factors such as classroom size restrictions are the driving force, the specific type of synchronous learning activities should be carefully considered. The structure and approach to lessons needs to be rethought to optimise the affordances of the hybrid virtual and connected classroom. The complexity of using these formats, and the additional time needed to do it properly, should not be underestimated. These findings are consistent with previous literature on this subject. An ongoing dialogue with faculty, support staff and especially students should be an integral part of any further implementation in this format.
DOCUMENT
Interactive Virtual Math (IVM) is a visualization tool to support secondary school students’ learning of dynamic functions situations graphs. The logbook-function allows teachers to get continuous and real-time assessment on classroom progress and of individual students’ learning process. In a teaching experiment involving four mathematics teachers and their students, we investigated how the tool was used by the students and by the teachers.
DOCUMENT
Interactive Virtual Math (IVM) is a visualization tool to support secondary school students’ learning of graphs by dynamic events. In the prototype version students construct a graph and try to improve it themselves and with the feedback of the tool. In a small-scale experiment, which involved four classes at secondary and tertiary education and their mathematics teachers we investigated how the students used the tool in the classroom. In this study we focus on the students learning experience and the results are expected to provide knowledge and directions for further development of the tool. The corpus data consists of self-reported questionnaires and lessons observations. One main finding is that students, at different school levels, find the tool useful to construct or improve graphical representations and it can help to get a better understanding of the subject. The tool features that helped students most were the self-construction of the graphs and to get feedback about their own graph at the end. Other findings are that the students can work independently with the tool and we know more about the tool features that are attractive or need to be improved.
MULTIFILE
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.