Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Background: Improved preferred gait speed in older adults is associated with increased survival rates. There are inconsistent findings in clinical trials regarding effects of exercise on preferred gait speed, and heterogeneity in interventions in the current reviews and meta-analyses. Objective: to determine the meta-effects of different types or combinations of exercise interventions from randomized controlled trials on improvement in preferred gait speed. Methods: Data sources: A literature search was performed; the following databases were searched for studies from 1990 up to 9 December 2013: PubMed, EMBASE, EBSCO (AMED, CINAHL, ERIC, Medline, PsycInfo, and SocINDEX), and the Cochrane Library. Study eligibility criteria: Randomized controlled trials of exercise interventions for older adults ≥ 65 years, that provided quantitative data (mean/SD) on preferred gait speed at baseline and post-intervention, as a primary or secondary outcome measure in the published article were included. Studies were excluded when the PEDro score was ≤4, or if participants were selected for a specific neurological or neurodegenerative disease, Chronic Obstructive Pulmonary Disease, cardiovascular disease, recent lower limb fractures, lower limb joint replacements, or severe cognitive impairments. The meta-effect is presented in Forest plots with 95 % confidence Study appraisal and synthesis methods: intervals and random weights assigned to each trial. Homogeneity and risk of publication bias were assessed. Results: Twenty-five studies were analysed in this meta-analysis. Data from six types or combinations of exercise interventions were pooled into sub-analyses. First, there is a significant positive meta-effect of resistance training progressed to 70-80 % of 1RM on preferred gait speed of 0.13 [CI 95 % 0.09-0.16] m/s. The difference between intervention- and control groups shows a substantial meaningful change (>0.1 m/s). Secondly, a significant positive meta-effect of interventions with a rhythmic component on preferred gait speed of 0.07 [CI 95 % 0.03-0.10] m/s was found. Thirdly, there is a small significant positive meta-effect of progressive resistance training, combined with balance-, and endurance training of 0.05 [CI 95 % 0.00-0.09] m/s. The other sub-analyses show non-significant small positive meta-affects. Conclusions: Progressive resistance training with high intensities, is the most effective exercise modality for improving preferred gait speed. Sufficient muscle strength seems an important condition for improving preferred gait speed. The addition of balance-, and/or endurance training does not contribute to the significant positive effects of progressive resistance training. A promising component is exercise with a rhythmic component. Keeping time to music or rhythm possibly trains higher cognitive functions that are important for gait. Limitations: The focus of the present meta-analysis was at avoiding as much heterogeneity in exercise interventions. However heterogeneity in the research populations could not be completely avoided, there are probably differences in health status within different studies.
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.