The background and purpose of this paper is to investigate adherence, exercise performance levels and associated factors in head and neck cancer (HNC) patients participating in a guided home-based prophylactic exercise program during and after treatment [swallowing sparing intensity modulated radiation therapy (SW-IMRT)]. Fifty patients were included in the study. Adherence was defined as the percentage of patients who kept up exercising; exercise performance level was categorized as low: ≤1, moderate: 1–2, and high: ≥2 time(s) per day, on average. Associations between 6- and 12-week exercise performance levels and age, gender, tumour site and stage, treatment, intervention format (online or booklet), number of coaching sessions, and baseline HNC symptoms (EORTC-QLQ-H&N35) were investigated. Adherence rate at 6 weeks was 70% and decreased to 38% at 12 weeks. In addition, exercise performance levels decreased over time (during 6 weeks: 34% moderate and 26% high; during 12 weeks: 28% moderate and 18% high). The addition of chemotherapy to SW-IMRT [(C)SW-IMRT] significantly deteriorated exercise performance level. Adherence to a guided home-based prophylactic exercise program was high during (C)SW-IMRT, but dropped afterwards. Exercise performance level was negatively affected by chemotherapy in combination with SW-IMRT.
Purpose: The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods: Starting from a Cognitive Systems Engineering perspective, we developed an Impact Flow Diagram showing the relationship of computer technology, cognition, practitioner behavior, and system failure in the area of medical infusion devices. We subsequently conducted a systematic literature review on user-interface issues with infusion pumps, categorized the studies in terms of methods employed, and noted the usability problems found with particular methods. Next, we assigned usability problems and related methods to the levels in the Impact Flow Diagram. Results: Most study methods used to find user interface issues with infusion pumps focused on observable behavior rather than on how artifacts shape cognition and collaboration. A concerted and theorydriven application of these methods when testing infusion pumps is lacking in the literature. Detailed analysis of one case study provided an illustration of how to apply the Impact Flow Diagram, as well as how the scope of analysis may be broadened to include organizational and regulatory factors. Conclusion: Research methods to uncover use problems with technology may be used in many ways, with many different foci. We advocate the adoption of an Impact Flow Diagram perspective rather than merely focusing on usability issues in isolation. Truly advancing patient safety requires the systematic adoption of a systems perspective viewing people and technology as an ensemble, also in the design of medical device technology.
Playful Mapping is the result of many years of joint enterprise in which we, as authors, devel-oped a close intellectual collaboration. As a book, it emerged towards the end of the ERC project Charting the Digital that ran from 2011-2016, and during a still-ongoing Erasmus+ project; Go Go Gozo. Over this five year period, members of the Playful Mapping Collective got to know each other as colleagues and friends, participating regularly in diverse academic and social activities, such as conference panels and workshops.1 The authorship of this book therefore reflects an interesting collaborative experiment, enrolling researchers who have been working together in an active way over the past half-decade. This preface explains the genealogy of the emerging and open collaboration through which we developed ideas
A unique testing ground where the creative sector and education work together to better understand the possibilities around volumetric video capturing. Within a volumetric studio, dozens of cameras capture all the movements of a living subject simultaneously. These recordings are converted into a fully moving and digital image, which results in an image that is barely distinguishable from reality. Chronosphere gives content creators and scientists the unique opportunity to experiment with volumetric capturing, using the newest volumetric studio within De Effenaar. There is room for a total of twenty projects, and proposals can be submitted.Partners:De Effenaar 4DR Studios Wildvreemd Natlab 360 verbeelding Dutch Rose Media Hyperspace Institute Fontys Hogescholen TU/e Center for Humans & Technology