Waste separation at companies is considered a priority to achieve a circular and sustainable society. This research explores behaviour change poli-cies for separating the organic fraction of municipal solid waste (OFMSW) at Small and Medium Enterprises (SMEs), particularly in cities. At SMEs, co-work-ers are responsible for waste disposal. Therefore, their behavioural intention to-wards pro-environmental action plays a major role. In this study, we have used agent-based modelling and simulation to explore the waste behaviour of the ac-tors in the system. The models were co-created in participatory workshops, sur-veys and interviews with stakeholders, domain experts and relevant actors. Ad-ditionally, we co-created and tested practical social and technical interventions with the model. We used the collaborative modelling method Lange reported to conceptualise, implement, test and validate the models. Five policies that affect waste separation behaviour were included in the model. The model and simula-tion results were cross-validated with the help of a literature study. The results were validated through experts and historical data to sketch a generalisable idea of networks with similar characteristics. These results indicate that combinations of behaviour profiles and certain policy interventions correlate with waste sepa-ration rates. In addition, individual waste separation policies are often limitedly capable of changing the behaviour in the system. The study also shows that the intention of co-workers concerning environmental behaviour can significantly impact waste separation rates. Future work will include the role of households, policies supporting separating multiple waste types, and the effect of waste sep-aration on various R-strategies.
The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.
MULTIFILE
The future energy system could benefit from the integration of independent gas, heat and electricity infrastructures. Such a hybrid energy network could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value. Therefore, we analyzed the integration of decentralized LNG regasification with a Waste-to-Energy (W2E) plant for a practice-based case to get an idea on how it might affect the balancing of supply and demand, under optimized exergy efficient conditions. We compared an independent system with an integrated system that consists of the use of the LNG cold to cool the condenser of the W2E plant, as well as the expansion of the regasified LNG in an expander, using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. The results indicate that the integration affects the imbalance for electricity and heat compared to the independent system. If the electricity demand is met, both the total yearly heat shortage and heat excess are reduced for the integrated system. If the heat demand is met, the total yearly electricity shortage is also reduced (with 100 MWh). However, the total yearly electricity excess is then increased (with 300 MWh). We observed that these changes are solely due to the increase in exergy efficiencies for heat and electricity of the W2E Rankine cycle. The efficiency of the expander is too low to offer a significant contribution to the electricity demand. Therefore, future research should focus on the affect that can be obtained by to other means of integration (e.g. Organic Rankine Cycle and Stirling Cycle).
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The climate change and depletion of the world’s raw materials are commonly acknowledged as the biggest societal challenges. Decreasing the energy use and the related use of fossil fuels and fossil based materials is imperative for the future. Currently 40% of the total European energy consumption and about 45% of the CO2 emissions are related to building construction and utilization (EC, 2015). Almost half of this energy is embodied in materials. Developing sustainable materials to find replacement for traditional building materials is therefore an increasingly important issue. Mycelium biocomposites have a high potential to replace the traditional fossil based building materials. Mycelium is the ‘root network’ of mushrooms, which acts as a natural glue to bind biomass. Mycelium grows through the biomass, which functions simultaneously as a growth substrate and a biocomposite matrix. Different organic residual streams such as straw, sawdust or other agricultural waste can be used as substrate, therefore mycelium biocomposites are totally natural, non-toxic, biological materials which can be grown locally and can be composted after usage (Jones et al., 2018). In the “Building On Mycelium” project Avans University of Applied Sciences, HZ University of Applied Sciences, University of Utrecht and the industrial partners will investigate how the locally available organic waste streams can be used to produce mycelium biocomposites with properties, which make them suitable for the building industry. In this project the focus will be on studying the use of the biocomposite as raw materials for the manufacturing of furniture or interior panels (insulation or acoustic).