Biogas plays an important role in many future renewable energy scenarios as a source of storable and easily extracted form of renewable energy. However, there remains uncertainty as to which sources of biomass can provide a net energy gain while being harvested in a sustainable, ecologically friendly manner. This study will focus on the utilization of common, naturally occurring grass species which are cut during landscape management and typically treated as a waste stream. This waste grass can be valorized through co-digestion with cow manure in a biogas production process. Through the construction of a biogas production model based on the methodology proposed by (Pierie, Moll, van Gemert, & Benders, 2012), a life cycle analysis (LCA) has been performed which determines the impacts and viability of using common grass in a digester to produce biogas. This model performs a material and energy flow analysis (MEFA) on the biogas production process and tracks several system indicators (or impact factors), including the process energy return on energy investment ((P)EROI), the ecological impact (measured in Eco Points), and the global warming potential (GWP, measured in terms of kg of CO2 equivalent). A case study was performed for the village of Hoogkerk in the north-east Netherlands, to determine the viability of producing a portion of the village’s energy requirements by biogas production using biomass waste streams (i.e. common grass and cow manure in a co-digestion process). This study concludes that biogas production from common grass can be an effective and sustainable source of energy, while reducing greenhouse gas emissions and negative environmental impacts when compared to alternate methods of energy production, such as biogas produced from maize and natural gas production.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
In the Netherlands, the theme of transitioning to circular food systems is high on the national agenda. The PBL Netherlands Environmental Assessment Agency has stressed that commuting to circular food chains requires a radical transformation of the food chain where (a) natural resources must be effectively used and managed (soil, water, biodiversity, minerals), (b) there must be an optimum use of food by reducing (food) waste . . ., (c) less environmental pressure, and (d) an optimum use of residue streams. The PBL also recognizes that there should be room for tailored solutions and that it is important to establish a benchmark, to be aware of impacts in the production chain and the added value of products. In the line of circular food systems, an integrated nature-inclusive circular farming approach is needed in order to develop a feasible resource-efficient and sustainable business models that brings shared value into the food chain while invigorating the rural areas including those where agricultural vacancy is occurring. Agroforestry is an example of an integrated nature-inclusive circular farming. It is a multifunctional system that diversifies and adapts the production while reducing the carbon footprint and minimizing the management efforts and input costs; where trees, crops and/or livestock open business opportunities in the food value chains as well as in the waste stream chains. To exploit the opportunities that agroforestry as an integrated resource-efficient farming system adds to the advancement towards (a) valuable circular short food chains, (b) nature-based entrepreneurship (nature-inclusive agriculture), and (c) and additionally, the re-use of abandoned agricultural spaces in the Overijssel province, this project mobilizes the private sector, provincial decision makers, financers and knowledge institutes into developing insights over the feasible implementation of agroforestry systems that can bring economic profit while enhancing and maintaining ecosystem services.
Mattresses for the healthcare sector are designed for robust use with a core foam layer and a polyurethane-coated polyester textile cover. Nurses and surgeons indicate that these mattresses are highly uncomfortable to patients because of poor microclimatic management (air, moisture, temperature, friction, pressure regulation, etc) across the mattress, which can cause pressure ulcers (in less than a day). The problem is severe (e.g., extra recovery time, medication, increased risk, and costs) for patients with wounds, infection, pressure-sensitive decubitus. There are around 180,000 waterproof mattresses in the healthcare sector in the Netherlands, of which yearly 40,000 mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these functional mattresses from 180,000 to 400,000 in the next 10 years in the healthcare sector. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials by 2030. As of January 1, 2022, mattress manufacturers and importers are obliged to pay a waste management contribution. Within the scope of this project, we will design, develop, and test a circular & functional mattress for the healthcare (cure & care) sector. The team of experts from knowledge institutes, SMEs, hospital(s), branch-organization joins hands to design and develop a functional (microclimate management, including ease of use for nurses and patients) mattress that deals with uncomfortable sleeping and addresses the issue of pressure ulcers thereby overall accelerating the healing process. Such development addresses the core issue of circularity. The systematic research with proper demand articulation leads to V-shape verification and validation research methodology. With design focus and applied R&D at TRL-level (4-6) is expected to deliver the validated prototype(s) offering SMEs an opportunity to innovate and expand their market. The knowledge will be used for dissemination and education at Saxion.