High population growth, a lack of wastewater treatment plants and poor wastewater management are major challenges in wastewater management in Timor-Leste (East Timor). One of the approaches of the government of Timor-Leste is to separate wastewater into greywater and blackwater from domestic, commercial, residential, and industrial areas. Three methods were applied to obtain insight into the locations and discharge of grey- and blackwater to develop a cost-effective wastewater strategy: a field survey and data collection, interviews with over 130 participants from local authorities and communities, and the open-source mapping of locations of wastewater discharge. This research concluded that 47.7% of the grey wastewater is discharged into open sewers connected directly to the sea. Most communities discharge their wastewater directly due to the absence of wastewater management, policies and regulations, and lack of communities’ understanding of the possible health impacts of wastewater. The impact of poor wastewater management showed that most of the children in these communities have suffered from diarrhea (73.8%), and in the rainy season, there is a high possibility of infection with waterborne diseases. The literature review, field mapping, and interviews show that there is high demand for a cost-effective wastewater strategy for health improvement. Low-cost nature-based solutions such as constructed wetlands and bioswales can be implemented with local skills and materials to improve the wastewater situation and address other challenges such as biodiversity loss, heat stress, drought, and floodings. These installations are easier to rebuild than large-scale grey infrastructure given the multiple hazards that occur in Timor-Leste: landslides, earthquakes, strong wind, and pluvial and fluvial floodings, and they can serve as coastal protection.
LINK
Self-organisation in environmental service delivery is increasingly being promoted as an alternative to centralised service delivery. This article argues that self-organised environmental service delivery must be understood in the context of legal rules, especially environmental legislation. The article’s aim is twofold: first, to understand the changing relationship between the government and citizens in self-organised service delivery, and second, to explore how self-organised environmental service delivery complies with environmental quality requirements stipulated in legislation. The empirical study focuses on wastewater management in Oosterwold, the largest Dutch urban development that experimented with self-organisation. The results show that while individual wastewater management was prioritised and implemented at scale, the applicable legal rules were not adequately considered and integrated. Consequently, the experiment led to a deterioration of water quality. The article concludes that the success or failure of self-organisation in delivering environmental services such as wastewater management critically hinges on ensuring compliance with environmental legislation.
DOCUMENT
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.