Urban delta areas are facing problems related with land scarcity and are impacted by climate change and flooding. To meet the current demands and future challenges, innovative and adaptive urban developments are necessary [de Graaf, 2009]. Floating urban development is a promising solutions, as it offers the flexibility and multifunctionality required to efficiently face the current challenges for delta cities. It provides flood proof buildings and opportunities for sustainable food and energy production
LINK
With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
Small urban water bodies, like ponds or canals, are often assumed to cool their surroundings during hot periods, when water bodies remain cooler than air during daytime. However, during the night they may be warmer. Sufficient fetch is required for thermal effects to reach a height of 1–2 m, relevant for humans. In the ‘Really cooling water bodies in cities’ (REALCOOL) project thermal effects of typical Dutch urban water bodies were explored, using ENVI-met 4.1.3. This model version enables users to specify intensity of turbulent mixing and light absorption of the water, offering improved water temperature simulations. Local thermal effects near individual water bodies were assessed as differences in air temperature and Physiological Equivalent Temperature (PET). The simulations suggest that local thermal effects of small water bodies can be considered negligible in design practice. Afternoon air temperatures in surrounding spaces were reduced by typically 0.2 °C and the maximum cooling effect was 0.6 °C. Typical PET reduction was 0.6 °C, with a maximum of 1.9 °C. Night-time warming effects are even smaller. However, the immediate surroundings of small water bodies can become cooler by means of shading from trees, fountains or water mists, and natural ventilation. Such interventions induce favorable changes in daytime PET.
Veel van de isolatiematerialen die we momenteel gebruiken, zoals glaswol en steenwol, hebben een behoorlijke impact op het milieu en zijn niet circulair. Gelukkig zijn er alternatieven die beter zijn voor de natuur, zoals isolatie gemaakt van biobased materialen zoals houtvezels en hennepvezels. Deze materialen zijn hernieuwbaar en hebben vrijwel geen nadelige effecten op het milieu, zijn gunstig voor een gezond binnenklimaat in een woning, terwijl ze nog steeds goede isolerende eigenschappen hebben. De ambitie van de rijksoverheid is dat in 2030 minstens 30% van de nieuwbouwwoningen uit minimaal 30% van deze biobased materialen bestaan. Hetzelfde percentage geldt als doelstelling voor isolatiemaatregelen voor verduurzaming en voor de gebruikte materialen voor utiliteitsbouw. Een nieuwe ontwikkeling is het gebruik van mycelium, schimmels die zorgen voor de groei van een materiaal wat ingezet kan worden als isolatie. Mycelium heeft isolerende en akoestische eigenschappen, is waterafstotend en brandwerend. Mycelium panelen op de huidige markt worden belemmerd in hun ontwikkeling doordat ze in mallen worden gegroeid, hierdoor kunnen er geen grotere diktes bereikt worden in verband met de benodigde groeiomstandigheden van mycelium. Dit leidt tot verminderde isolerende eigenschappen. Door geavanceerde 3D-printtechnieken te gebruiken waarbij er complexe vormen geprint kunnen worden die de groei van mycelium bevorderen ook op grotere diktes, willen we in dit 1-jarige KIEM project onderzoeken hoe we een innovatief mycelium isolatiemateriaal kunnen ontwikkelen, geschikt voor 3D printers, dat nog beter past bij de behoeften vanuit de markt. De resultaten van deze studie kunnen aantonen dat de toepassing van biobased isolatiematerialen en geavanceerde productiemethoden niet alleen leiden tot een efficiëntere isolatie van gebouwen, maar ook de milieueffecten vermindert en nieuwe mogelijkheden biedt voor diverse en grootschalige toepassingen.
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
Onze huidige voedselvoorziening wordt gekenmerkt door overmatig gebruik van bestrijdingsmiddelen zoals antibiotica, genetische manipulatie, overdadig veel transport, water en andere grondstoffen worden gebruikt en productieprocessen gebaseerd op fossiele brandstoffen. Ook wordt veel landbouwgrond dusdanig uitgeput dat de kwaliteit van de grond en de diversiteit sterk achteruit gaan. Gezonde en duurzaam geproduceerde voeding zou voor iedereen bereikbaar moeten zijn. Bovendien is er veel leegstand in verschillende regio’s, deze leegstand kan door middel van aquacultuur systemen zeer waardevol worden benut. Dit is de aanleiding geweest om te zoeken naar alternatieve mogelijkheden voor duurzame productie van voedsel binnen de agrifoodsector. Geïntegreerde aquacultuur systemen worden verwacht goed toepasbaar te zijn voor duurzame voedingsproductie. Deze systemen verminderen de afhankelijkheid van de huidige voedselvoorziening van chemie, olie en gas. Bovendien stimuleert het de lokale en regionale economie en schept het duurzame werkgelegenheid. De doelstelling is het sluiten van de materiaalstroomketen, het voorkomen van afvalstoffen en het stimuleren van grondstof besparing. De aanpak van dit project is daarom gericht op de transitie naar circulaire materiaalstromen waarbij hoogwaardig hergebruik van de materialen mogelijk is op een manier waarbij waarde wordt toegevoegd. Hierbij worden mogelijkheden verkent in het kader van de biobased economy en nieuwe business- en verdienmodellen van dergelijke geïntegreerde aquaculturen. De onderzoeksvraag voor A2FISH is welke circulaire business- en verdienmodellen er realiseerbaar zijn voor kansrijke geïntegreerde aquacultuursystemen binnen de agrifoodsector. Om die onderzoeksvraag uiteindelijk te kunnen beantwoorden, zijn een aantal deelvragen geformuleerd: • Welke aquacultuursystemen zijn kansrijk toepasbaar binnen de agrifoodsector? • Aan welke technische en economische aspecten moet een aquacultuursysteem voldoen om te komen tot kansrijke business- en verdienmodellen? • Welke soorten planten kunnen worden met waardevolle inhoudsstoffen kunnen worden gekweekt met de aquacultuursystemen? • Welke soorten gangbaar industrieel visvoer kan worden gefabriceerd uit reststromen uit de voedingsmiddelenindustrie en welke invloed heeft dit voer als bemesting op de waterkwaliteit? • Hoe ziet een vervolgtraject voor een geïntegreerd circulair aquacultuursysteem eruit en in hoeverre is dit anders dan voor gangbare alternatieven?