Kunstmest voor de velden en brandstof voor landbouwvoertuigen zijn belangrijke kostenposten voor de landbouw. Kunstmest en dieselbrandstof zijn energie-intensieve producten en daarmee ook een belangrijke bron van CO2 emissies vanuit de landbouw. Technologie voor hernieuwbare energie zoals zonne- en wind energie wordt steeds goedkoper waardoor het rendabeler wordt deze technologie ook te gebruiken. Terug leveren van geproduceerde hernieuwbare elektriciteit aan het elektriciteitsnet is echter niet altijd voordelig. De hernieuwbare energie moet hier concurreren met gesubsidieerde fossiele elektriciteit opgewekt met kolen, gas en kerncentrales. Kleinschalige decentrale productie op het boerenbedrijf van zowel kunstmest als transportbrandstof met behulp van hernieuwbare energie levert de boer en zijn omgeving direct voordeel op:Inkoopkosten voor deze producten worden lagerVermindert de CO2-emissie van de landbouw aanzienlijk, de carbo-footprint wordt verminderdRendement op hernieuwbare energie technologie wordt hogerAmmoniak (NH3) is zowel grondstof voor kunstmest als brandstof voor motoren. Ammoniak kan diesel voor meer dan 90% vervangen in bestaande dieselmotoren. Daarmee is ammoniak een uitstekende vervanger voor diesel in het landbouw en wegverkeer. Ammoniak is ook grondstof voor waterstof (H2) in waterstofmotoren. De technologie om ammoniak te maken is gebaseerd op het Haber-Bosch proces uit het begin van de vorige eeuw. Deze technologie vraagt veel energie voor het creëren van de hoge druk en de hoge temperaturen. Daarom is het voordelig het Haber-Bosch proces in grote installaties uit te voeren.Nieuwe brandstofcel-technologie maakt het mogelijk het Haber-Bosch proces (elektro-katalytisch) op kleine schaal uit te voeren. Het Kiemkracht concept Greenfertilizer onderzoekt de mogelijkheden van deze technologie voor ammoniak productie en benutting op het eigen boerenbedrijf.Het onderzoek is uitgevoerd door TU-Delft en Hanzehogeschool. Het doel was een opgeschaald ammonia elektrolyse synthese proces te ontwikkelen waar een eerste schaal-sprong gemaakt zou worden.Het elektrochemisch ammonia synthese proces is gebaseerd op zuurstofgeleidende elektroden, (proces figuur3. zie onder). Het voordeel van deze zuurstofgeleidende electroden boven proton geleidende electroden is dat er met omgevingslucht gewerkt kan worden in plaats van met stoom. Stoom maakt technologische ontwikkeling van het proces gecompliceerder. Experimenteel en theoretisch onderzoek van TU-Delft laat zien dat met deze elektroden ammonia te produceren is. TU-Delft heeft met zuurstof geleidende electroden ammonia productiesnelheden behaald van 1,84x 10-10 mol s-1 cm-2 bij 650oC. Deze snelheden zijn een factor 100-1000 hoger dan tot nu toe gerapporteerd in literatuur (Kyriakou et al 2017). Simulatie-studies van TU-Delft laten zien dat het ammonia synthese proces met een factor 100-1000 versneld kan worden door het proces onder druk te brengen bij een temperatuur van 400-500C. Op basis van deze simulaties is een ontwerp gemaakt en uitgevoerd voor een “hoge-druk electrolyse reactor”. Technische complicaties met deze hoge druk elektrolyse reactor maakte het onmogelijk betrouwbare resultaten te verkrijgen. Met name gas lekkages bij hoge temperaturen maakten het onmogelijk ammonia massabalansen op te stellen. Bovendien was ammonia productie niet aan te tonen. Hiermee zijn de simulatie voorspellingen niet bevestigd en blijft het onduidelijk of de onderliggende hypothesen correct zijn. De Hanzehogeschool heeft onderzoek uitgevoerd naar het concentreren van ammonia voor toepassing als vloeibare kunstmest. Uitgangspunt hierbij waren de ammonia productieniveau van de experimentele opzet en de voorspelde gesimuleerde opzet. Met de juiste technologie is het mogelijk de ammonia te concentreren voor verdere verwerking als kunstmest. Echter dit proces is economisch rendabel bij een ammonia concentratie in de uitstroom van de elektrolyse reactor die een factor 1000 hoger is dan tot nu toe is gemeten. Het feit dat de TU-Delft er niet in is geslaagd een kleine schaalsprong (factor 10) te maken met de drukreactor betekent dat commerciële toepassing van dit proces voorlopig nog niet aan de orde is. Achteraf gezien was het wellicht beter geweest de keuze te maken voor de proton geleidende electroden die bij lagere temperaturen werkzaam zijn, hier is een schaalsprong van een factor 100 ten opzichte van de recent gerapporteerde ammonia synthese snelheden. Een recente review door Kyriakou et al 2017 geeft als aanbeveling onderzoek te verrichten naar verbeterde elektrodematerialen en geleidende elektrolyten in de reactorcellen. Uiteindelijk zal het elektrochemisch ammonia synthese proces er komen vanwege de vele voordelen die het beidt. Processen moeten met een factor 100-1000 verbeterd worden eer het proces economisch rendabel is. Op dit moment is het nog niet te voospellen wanneer dit moment er is.
DOCUMENT
Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
DOCUMENT
Het lectoraat Energietransitie van EnTranCe, het Centre of Expertise Energyvan de Hanzehogeschool Groningen, richt zich op de systeemverandering dienodig is om de Energietransitie vorm te geven. Een systeemverandering, wantde energietransitie is meer dan het vervangen van centrales door windmolens enzonnepanelen. Het vraagt, naast technologische veranderingen, ook veranderingen binnen het sociaal-economische stelsel.Onze maatschappij is verslaafd aan energie en aan het gegeven dat het altijdonbeperkt beschikbaar is. Willen wij onze standaard van leven kunnen handhaven, dan moeten we bereid zijn om zaken aan te passen. Na de tweede wereldoorlog heeft onze energievoorziening zich sterk gecentraliseerd ontwikkeld, met grote partijen en infrastructuur (macro) die daar de regie op hebben. De groeiende wens vanuit de samenleving om zelf keuzes te kunnen maken in het gebied dat mensen zelf kunnen beïnvloeden (micro) zorgt voor een sterke ‘bottom up’ beweging rondom verduurzaming. In onze visie zullen de belangrijkste doorbraken rond de transitie nodig zijn daar waar de macro- en micro ontwikkelingen elkaar raken: het meso niveau. Hier is het dat het transitieproces zich het sterkst zal manifesteren. De onderzoekslijn ‘De rol van waterstof binnen de energietransitie’ binnen dit lectoraat richt zich dan ook op mogelijke productie en toepassingen van duurzame waterstof op dit mesoniveau. Het niveau van een dorp, een wijk , een blok huizen of een bedrijf. Ook hier kijken we naar de verandering van het gehele systeem: optechnologieniveau, de integratie met het macrosysteem, de mens, economie ende juridische praktijk. Samenwerking met andere lectoraten is dan ook van grootbelang.
DOCUMENT
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
Als gevolg van de energietransitie wordt het steeds moeilijker om energieaanbod en -vraag op elkaar af te stemmen en ontstaan problemen op het elektriciteitsnet. Energieopslag biedt een oplossing: duurzame energie wordt opgeslagen op momenten dat er aanbod en weinig energievraag is en beschikbaar gesteld wanneer er weinig aanbod en veel vraag is. Lokale opslag biedt een kans om lokale uitval van het elektriciteitsnet te voorkomen en geeft meerwaarde aan duurzame energie. Opslag in waterstof is uitermate geschikt voor zowel toepassingen op MW-schaal (windparken), voor seizoensopslag en voor toepassingen waar distributie relevant is. De wens van bedrijventerreinen om te verduurzamen biedt een kans om gericht aan oplossingen voor lokale energieopslag in waterstof en bijbehorende toepassingen te werken. In dit project werkt de HAN samen met MKB-bedrijven, Saxion, TU Delft, lokale overheden en een aantal overige partners aan het ontwikkelen en optimaliseren van een energieopslagsysteem gebaseerd op waterstof en bijbehorende waterstoftoepassingen op en voor bedrijventerrein IPKW in Arnhem. Beschikbare windenergie van in aanbouw zijnde turbines langs de Rijn bij IPKW vormen de aanleiding voor het ontwerpen, modelleren, construeren en testen van een (geschaald) energieopslagsysteem gebaseerd op de productie, en opslag van waterstof. Specifieke toepassingen op het industriepark worden geïnventariseerd, en waar mogelijk gerealiseerd en gemonitord, voor met name lokaal bedrijfstransport en elektriciteitslevering. Scenario’s voor ontwikkeling en toepassing van de technologie ontwikkeld en haalbaarheidsstudies uitgevoerd. Kennis en expertise worden ontwikkeld om het proces van optimale implementatie van waterstof voor energieopslag in een energieketen met specifieke toepassingen op een bedrijventerrein te ondersteunen. Met dit project bouwen wij voort op de vele eerdere waterstofprojecten die bij de HAN zijn uitgevoerd en maken we gebruik van ons recent gerealiseerde shared facility HAN Waterstoflab op IPKW.
Het FC Condensaat-project onderzoekt de samenstelling van condensaat dat vrijkomt bij de productie van elektriciteit met brandstofcellen uit waterstof. Hergebruik van deze zuivere waterstroom in elektrolyse-installaties voor de productie van waterstof kan 10-15 mln m³/j drinkwater besparen in Nederland. Dit heeft een waarde van € 50-75 mln/j en vertegenwoordigt een energiebesparing van 15-25 TWh/j voor drinkwaterproductie. Er zijn geen systematische gegevens over de samenstelling van dergelijk condensaat bekend. Chemische analyse van condensaat kan enerzijds over de aanwezigheid van bepaalde onzuiverheden uitsluitsel geven en anderzijds een indicatie geven over de oorsprong daarvan. Bovendien vormt dit een basis voor een eventuele polishing-methode om te voldoen aan de specificaties voor elektrolyse voedingswater. In dit project wordt condensaat geanalyseerd op anorganische zouten en een aantal mogelijke organische verbindingen, bepaald door de materialen in de brandstofcel. Daartoe wordt in een laboratoriumopstelling met een kleine brandstofcel onder verschillende omstandigheden condensaat geproduceerd, kwantitatief chemisch geanalyseerd en vergeleken met de samenstelling van condensaat uit een kleine commerciële brandstofcelinstallatie. Aan de hand hiervan worden mogelijke polishing-methoden benoemd en getest met een specifiek oog op hergebruik van dit condensaat als elektrolyse voedingswater. Ook wordt de hoeveelheid winbaar condensaat gekwantificeerd met een rekenkundig model. Vervolgens wordt een waarschijnlijke correlatie gelegd tussen de samenstelling van het condensaat en de materialen van de brandstofcel. Uiteindelijk kan dit aanleiding geven tot veranderingen in het proces of in de apparaten afgezet tegen de polishing-methoden.