Worldwide, rivers face challenges due to human and climatic pressures. Floods, droughts, pollution, damming and hydropeaking are only a few examples of these pressures, and influence the way rivers flow. Climate change adaptation projects increase the incentive to domesticate rivers, often legitimised through expert views on (future) vulnerability and risk. This emerging river imaginary dominates current debates in many rivers in our world. River imaginaries reflect spatially bound hydrosocial territories in which multiple actors on multiple scales from multiples sectors operate to reach varying objectives. They include water flows, ecological systems, climate conditions, hydraulic infrastructure, financial means, institutional arrangements, legal frameworks and information/knowledge hubs. In the context of climate change adaptation, river imaginaries are strongly dependent on the extent to which climate change is expected to influence rivers through a mixture of probable, possible, desirable or preferable versions of a (future) river. As such, knowledge-structures of future making are scrutinised in this research by emphasising on the role of change, the role of futures and the role of experts. This presentation aims to elucidate how river imaginaries have influenced river management under climate change adaptation that resulted in large infrastructural projects. Through a study of the Meuse river, a concrete case of a imaginary came into being in the Dutch-Belgian Border-Meuse trajectory. Moreover, preliminary result from adaptation projects in the marshlands of the lower Magdalena in Colombia strengthen the dominate imaginary of technocratic and ecocentric approaches to climate change adaptation where an expert view on local knowledge dominates.
LINK
The increasing share of renewable production like wind and PV poses new challenges to our energy system. The intermittent behavior and lack of controllability on these sources requires flexibility measures like storage and conversion. Production, consumption, transportation, storage and conversion systems become more intertwined. The increasing complexity of the system requires new control strategies to fulfill existing requirements.The SynergyS project addresses the main question how to operate increasingly complex energy systems in a controllable, robust, safe, affordable, and reliable way. Goal of the project is to develop and test a smart control system for a multi-commodity energy system (MCES), with electricity, hydrogen and heat. In scope are an industrial cluster (Chemistry Park Delfzijl) and a residential cluster (Leeuwarden) and their mutual interaction. Results are experimentally tested in two real-life demo-sites scale models: Centre of Expertise Energy (EnTranCe) and The Green Village (TU Delft) represent respectively the industrial and residential cluster.The result will be a market-driven control system to operate a multi-commodity energy system, integrating the industrial and residential cluster. The experimental setup is a combination of physical demo-site assets complemented with (digital) asset models. Experimental validation is based on a demo-scenario including real time data, simulated data and several stress tests.In this session we’ll elaborate more on the project and present (preliminary) results on the testing criteria, scenarios and experimental setup.
LINK
Measurement methodologies are increasingly being deployed to monitor energy poverty or energy access, and to provide insights for policy development, both in the South and more recently also in the North. However, care should be taken with interpretation and use of the data, particularly if a gender perspective is lacking. This paper argues that taking a gender perspective is vital to understanding energy access and outcomes related to interventions, through consideration of gendered user differences in energy needs, access to energy services and gendered outcome pathways. We show that the standard practice of focusing on numbers of energy connections, availability and quality of supply, is insufficient to provide insights relevant to realising gender equal access and benefits. It is a political decision about what is measured and who decides on what is measured. Based on the literature, we discuss key elements of the use of gender approaches in the assessment of energy access and energy poverty. We show that by including gender approaches in the design and execution of qualitative and quantitative data collection and analysis, there is the potential to contribute to more equitable outcomes from improved energy access.
MULTIFILE
In dit traject bundelen NHL Stenden Hogeschool en Wetsus de krachten en gaan een lector Waterslim Waterstof aanstellen, waarmee de realisatie van een grootschalige waterstof-hub in Noord-Nederland, en daarmee de Nederlandse energietransitie, drastisch zal versnellen. Waterslim Waterstof definiëren we als waterstof gemaakt met hernieuwbare energie, uit hernieuwbare watervoorraden. Dus zonder uitputting van schaarse zoetwatervoorraden. De stand der techniek voor groene waterstof is elektrolyse van gedemineraliseerd zoetwater. Per kg waterstof is ten minste 9 kg gedemineraliseerd water nodig. Grootschalige waterstof productie concurreert met drinkwater en andere zoetwaterbronnen en vergroot de problemen rond seizoensgebonden droogte en teruglopende waterkwaliteit. In dit lectoraat worden verschillende routes ontwikkeld om waterstof rechtstreeks uit laagwaardig water te produceren, zoals zee- of brakwater. Dit zal worden bereikt door innovatieve membranen, katalytische materialen en elektrochemische celconfiguraties in te zetten voor een meer efficiënte opslag en productie van waterstof. Met name op het gebied van de productiewijze van het flowfield van de membraan gescheiden electrolyser en de keuze van de katalysatoren voor de splitsing van water in waterstof en zuurstof zijn doorbraken mogelijk. Ook op het gebied van de katalysatorbereiding zijn veel nieuwe ontwikkelingen gaande om te komen tot zeer hoge stroomdichtheden. Integratie van waterontzilting met elektrolyse voor waterstofproductie is een hele andere invalshoek. Het werkplan bestaat primair uit praktijkonderzoek, grotendeels uitgevoerd door studenten, onder begeleiding van de nieuwe lector en betrokken bedrijven. Het toegepast onderzoek bestaat uit het op lab-schaal verder ontwikkelen van veelbelovende elektrochemische systemen, en het opschalen van reeds gevalideerde oplossingen. Dit alles zal plaatsvinden in een bredere context, waar wetenschappelijke vragen worden geadresseerd door Wetsus, en de betrokken bedrijven de technologie met NHL Stenden naar commerciële toepassing brengen. In dit traject worden fundamentele kennis, praktijkonderzoek met nieuwe materialen en systemen, de training van jonge professionals in de water-energie nexus met innovatieve bedrijven bijeengebracht voor maximale impact.