Urban delta areas are facing problems related with land scarcity and are impacted by climate change and flooding. To meet the current demands and future challenges, innovative and adaptive urban developments are necessary [de Graaf, 2009]. Floating urban development is a promising solutions, as it offers the flexibility and multifunctionality required to efficiently face the current challenges for delta cities. It provides flood proof buildings and opportunities for sustainable food and energy production
LINK
Over the past 20 years, water quality in Indonesia has deteriorated due to an increase of water pollution. Research and analysis is needed to identify pollution sources and assess contamination in Indonesian water resources. Water quality management is not yet sufficiently integrated in river basin management in Indonesia, which mainly focuses on water quantity. Women are comparatively highly impacted by failing water resources management, but theirinvolvement in decision making processes is limited. Water quality deterioration continues to increase socio-economic inequality, as it are the most poor communities who live on and along the river. The uneven water quality related disease burden in Brantas River Basin widens the socio-economic gap between societal groups. In the Brantas region, cooperation and intention between stakeholders to tackle these issues is growing, but is fragile as well due to overlapping institutional mandates, poor status of water quality monitoring networks, and limited commitment of industries to treat their waste water streams. The existing group of Indonesian change makers will be supported by this project. Three Indonesian and three Dutch organisations have teamed up to support negotiation platforms in order to deal with institutional challenges, to increase water quality monitoring capacity, to build an enabling environment facilitating sustainable industrial change, and to develop an enabling environment in support of community concerns and civil society initiatives. The project builds on integrated water quality monitoring and modelling within a framework of social learning. The strong consortium will be able to build links with civil society groups (including women, farmer and fisher unions) in close cooperation with local, regional and national Indonesian governmentinstitutions to clean the Brantas river and secure income and health for East Java’s population, in particular the most vulnerable groups.
DOCUMENT
With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
As climate change accelerates, rising sea levels pose challenges for low-lying nations like the Netherlands. Floating developments (such as homes, solar parks, and pavilions) are considered the most climate adaptative solution for the future, but the effects on the environment are unknown which is holding back this floating transformation. Since public and private partners are not able to answer questions on the effect of floating urbanisation on the environment and water quality based on speculations by models without field data, permits are given only after proof that ecological & water quality will not affected (also EU warnings ‘deteriorating’ water quality (UvW 2025, EU 2025). This proposal aims to develop an innovative autonomous docking station for aquatic drones, enhancing environmental monitoring of floating structures. Only a few monitoring campaigns measured the impact of small floating structures (small structures and only basic parameters). Traditional monitoring methods rely on manual sampling and static sensors, which are costly, labour-intensive, and provide delayed results. A new study, led by Hanze with Gemeente Rotterdam, Waternet (Gemeente Amsterdam) and Indymo, will assess the impact of new large-scale floating developments with a new method. Autonomous aquatic drones improve data resolution but face operational challenges such as battery life and data retrieval. An innovating docking station will address these issues by enabling drones to recharge, offload data, and perform continuous missions without human intervention. Advanced tools—including aquatic drones, 360-degree cameras, sonar imaging, and real-time sensors—will collect high-resolution environmental data also monitoring biodiversity and bathymetry. The proposed docking station will support real-time sensor networks, allowing for spatial and temporal data collection. It will improve the (cost) efficiency and quality of long-term environmental monitoring, providing insights into water quality dynamics and underwater ecosystems in Rotterdam and Amsterdam as an international example of floating development in the battle of climate change.
The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.
The Netherlands is facing great challenges to achieve (inter)national climate mitigation objectives in limited time, budget and space. Drastic innovative measures such as floating solar parks are high on political agendas and are entering our water systems . The clear advantages of floating solar (multifunctional use of space) led to a fast deployment of renewable energy sources without extensive research to adequately evaluate the impacts on our environment. Acquisition of research data with holistic monitoring methods are urgently needed in order to prevent disinvestments. In this proposal ten SMEs with different expertise and technologies are joining efforts with researchers and four public parties (and 12 indirectly involved) to answer the research question “Which monitoring technologies and intelligent data interpretation techniques are required to be able to conduct comprehensive, efficient and cost-effective monitoring of the impacts of floating solar panels in their surroundings?" The outputs after a two-year project will play a significant and indispensable role in making Green Energy Resources Greener. Specific output includes a detailed inventory of existing projects, monitoring method for collection/analysis of datasets (parameters/footage on climate, water quality, ecology) on the effects of floating solar panels on the environment using heterogeneous unmanned robots, workshops with public & private partners and stakeholders, scientific and technical papers and update of national guidelines for optimizing the relationship between solar panels and the surrounding environment. Project results have a global interest and the consortium partners aim at upscaling for the international market. This project will enrich the involved partners with their practical knowledge, and SMEs will be equipped with the new technologies to be at the forefront and benefit from the increasing floating solar market opportunities. This project will also make a significant contribution to various educational curricula in universities of applied sciences.