The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water boards. Moreover, plans to incorporate floating houses in the urban planning have already been developed. However, the knowledge gap regarding the potential effect on the water quality halts the further development of the floating houses. This paper shows the results of a water quality measurement campaign, as part of the national program “Knowledge for climate”, at a small floating houses project in Delft and serves as a case study for addressing the environmental-ecological knowledge gap on this topic.
With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
Urban delta areas require innovative and adaptive urban developments to face problems related with land scarcity and impacts of climate change and flooding. Floating structures offer the flexibility and multi-functionality required to efficiently face these challenges and demands. The impact of these structures on the environment, however, is currently unknown and research on this topic is often disregarded. This knowledge gap creates a difficulty for water authorities and municipalities to create a policy framework, and to regulate and facilitate the development of new projects.Monitoring the effects of floating structures on water quality and ecology has been difficult until now because of the poor accessibility of the water body underneath the structures. In this work, a remote controlled underwater drone equipped with water quality sensors and a video camera was used to monitor dissolved oxygen near and under floating structures. The collected data showed that most water quality parameters remain at acceptable levels, indicating that the current small scale floating structures do not have a significant influence on water quality. The underwater footage revealed the existence of a dynamic and diverse aquatic habitat in the vicinity of these structures, showing that floating structures can have a positive effect on the aquatic environment. Future floating structures projects therefore should be encouraged to proceed.
The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.
The Netherlands is facing great challenges to achieve (inter)national climate mitigation objectives in limited time, budget and space. Drastic innovative measures such as floating solar parks are high on political agendas and are entering our water systems . The clear advantages of floating solar (multifunctional use of space) led to a fast deployment of renewable energy sources without extensive research to adequately evaluate the impacts on our environment. Acquisition of research data with holistic monitoring methods are urgently needed in order to prevent disinvestments. In this proposal ten SMEs with different expertise and technologies are joining efforts with researchers and four public parties (and 12 indirectly involved) to answer the research question “Which monitoring technologies and intelligent data interpretation techniques are required to be able to conduct comprehensive, efficient and cost-effective monitoring of the impacts of floating solar panels in their surroundings?" The outputs after a two-year project will play a significant and indispensable role in making Green Energy Resources Greener. Specific output includes a detailed inventory of existing projects, monitoring method for collection/analysis of datasets (parameters/footage on climate, water quality, ecology) on the effects of floating solar panels on the environment using heterogeneous unmanned robots, workshops with public & private partners and stakeholders, scientific and technical papers and update of national guidelines for optimizing the relationship between solar panels and the surrounding environment. Project results have a global interest and the consortium partners aim at upscaling for the international market. This project will enrich the involved partners with their practical knowledge, and SMEs will be equipped with the new technologies to be at the forefront and benefit from the increasing floating solar market opportunities. This project will also make a significant contribution to various educational curricula in universities of applied sciences.
The application of sensors in water technology is a crucial step to provide broader, more efficient and circular systems. Among the different technologies used in this field, ultrasound-based systems are widely used, basically to generate energy peaks for cell lysis and particle separation. In this work, we propose the adaptation of an ultrasound system to monitor the concentration of solid particles in wastewater treatment plants settlers as well as to indicate sludge level (real time). A similar sensor was developed and tested in another project which operated successfully at solids concentration up to 1% in UASB reactors. Such measurements are nowadays obtained via time-consuming physical (solids) analysis, which can compromise the efficiency of the settlers and the quality of the effluent. The present project proposes an improved version of the sensor, which will combine solids concentration monitoring and sludge level detection. The defined targets have the intention to make a sensor with a much broader range of applications, been suitable not only for UASB reactors but also to settler and aerobic tanks. The project is a cooperation between the Water Technology lectoraat of NHL Stenden University of Applied Sciences, two SME’s - YNOVIO B.V. and Lamp-ion B.V. - and the INCT group (Brazil). If proven feasible, the concept can generate a big business market to the involved Dutch partners as well as favor the automation of WWTP in the Netherlands, Brazil and around the world.