De noodzaak om duurzame energie voor langere tijd op te slaan en weer beschikbaar te maken tijdens momenten wanneer er geen zonne- en/of windenergie beschikbaar is , wordt steeds groter. Opslaan van energie kan in de vorm van waterstof. Waterstof kan gebruikt worden in brandstofcellen voor de opwekking van elektriciteit of gebruikt worden voor verwarming of als grondstof in de chemische industrie. Omdat waterstof een steeds belangrijkere rol gaat innemen in de energietransitie is het belangrijk deze kennis , kunde en technologie zo breed mogelijk te delen en onder de aandacht te brengen.
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
Als gevolg van de energietransitie wordt het steeds moeilijker om energieaanbod en -vraag op elkaar af te stemmen en ontstaan problemen op het elektriciteitsnet. Energieopslag biedt een oplossing: duurzame energie wordt opgeslagen op momenten dat er aanbod en weinig energievraag is en beschikbaar gesteld wanneer er weinig aanbod en veel vraag is. Lokale opslag biedt een kans om lokale uitval van het elektriciteitsnet te voorkomen en geeft meerwaarde aan duurzame energie. Opslag in waterstof is uitermate geschikt voor zowel toepassingen op MW-schaal (windparken), voor seizoensopslag en voor toepassingen waar distributie relevant is. De wens van bedrijventerreinen om te verduurzamen biedt een kans om gericht aan oplossingen voor lokale energieopslag in waterstof en bijbehorende toepassingen te werken. In dit project werkt de HAN samen met MKB-bedrijven, Saxion, TU Delft, lokale overheden en een aantal overige partners aan het ontwikkelen en optimaliseren van een energieopslagsysteem gebaseerd op waterstof en bijbehorende waterstoftoepassingen op en voor bedrijventerrein IPKW in Arnhem. Beschikbare windenergie van in aanbouw zijnde turbines langs de Rijn bij IPKW vormen de aanleiding voor het ontwerpen, modelleren, construeren en testen van een (geschaald) energieopslagsysteem gebaseerd op de productie, en opslag van waterstof. Specifieke toepassingen op het industriepark worden geïnventariseerd, en waar mogelijk gerealiseerd en gemonitord, voor met name lokaal bedrijfstransport en elektriciteitslevering. Scenario’s voor ontwikkeling en toepassing van de technologie ontwikkeld en haalbaarheidsstudies uitgevoerd. Kennis en expertise worden ontwikkeld om het proces van optimale implementatie van waterstof voor energieopslag in een energieketen met specifieke toepassingen op een bedrijventerrein te ondersteunen. Met dit project bouwen wij voort op de vele eerdere waterstofprojecten die bij de HAN zijn uitgevoerd en maken we gebruik van ons recent gerealiseerde shared facility HAN Waterstoflab op IPKW.
HCA Groenvermogen NL vormt de aanleiding en het kader voor het aanstellen van Regionale Liaisons en het opstellen van Regionale Roadmapsin zes regio’s. Deze hebben als rol en functie de regio’s te mobiliseren voor Learning Communities en de uitwisseling binnen het Nationale Kennisplatform. Hierbij is Chemelot geïdentificeerd als één van die zes regio’s, en is Zuyd Hogeschool benaderd om een aanvraag voor te bereiden. ▪ Chemelot is een interessante locatie voor een doorgedreven inzet van Learning Communities op het gebied van waterstof. Waterstof is een belangrijk grondstof in de chemie en wordt vandaag geproduceerd uit aardgas. Ambitie is tegen 2050 duurzame waterstof zonder CO2- emissies te produceren. Samen met elektrificatie zal duurzame waterstof de energie- en grondstoffentransitie op Chemelot vormgeven. Daarnaast is op Chemelot reeds 10 jaar de Chemelot Innovation and Learning Labs (CHILL) actief, een publiek-private samenwerking tussen Universiteit Maastricht, Vista college, Zuyd Hogeschool en bedrijven als DSM, Sabic en Fibrant, en als dusdanig een Learning Community voor de verduurzaming van de chemie. ▪ De transitie naar een duurzame chemie is de inzet van de brede triple alliantie Chemelot Circular Hub (CCH) en haar Circulaire Economie Actieplan (CEAP). De CEAP vormt het referentiekader voor de verdere uitwerking van de Regionale Roadmap, met als focus het binden van talenten, aantrekken van gamechangers, topfaciliteiten voor onderzoek en innovatie incl. digitalisering. Het Regionale Liaisons-team is samengesteld uit experten vanuit de onderwijsinstellingen, CHILL, Brightsite en de CCH- programmamanager. Het team wordt ingebed in de CCH-governance, wat de afstemming met andere projecten binnen o.a. het Groeifonds en JTF borgt. Tot slot spiegelt onze aanpak zich aan de werkstromen binnen HCA GroenvermogenNL, dit in functie van een sterke synergie tussen regionale en nationale acties. Verdiepen van de kennisbasis, versterken van de samenwerking en versnellen van innovatieve onderwijs- en arbeidsmarktinitiatieven zijn hierin leidende principes.
Belangrijke uitdagingen binnen de energietransitie zijn de beschikbaarheid van waterstof uit duurzame energiebronnen als alternatief voor fossiele brandstoffen en het voorkomen van congestie op het elektriciteitsnet door toenemende vraag naar en aanbod van elektriciteit. Decentrale productie, opslag en toepassing van waterstof biedt voor beide uitdagingen een oplossing, maar om dit te realiseren zijn innovaties en kennisontwikkeling nodig. In dit RAAK MKB project willen bedrijven en kennisinstellingen als partners van het groeiende netwerk rondom waterstof innovatiecentrum H2Hub Twente, expertise ontwikkelen voor realisatie van decentrale elektrolyse systemen. De betrokken bedrijven zijn zich aan het ontwikkelen om systeemoplossingen voor de markt van decentrale elektrolyse aan te kunnen bieden, maar hebben nog stappen te maken in de benodigde expertise hiervoor. De kloof die de bedrijven in dit project willen overbruggen: van theoretisch inzicht en expertise op deelaspecten naar expertise om goed werkende systemen te kunnen realiseren en begrip krijgen van mogelijkheden voor verbeteringen en innovaties. Om die reden wordt het project vorm gegeven rondom de ontwikkeling en bouw van een prototype elektrolyse systeem dat wordt geïntegreerd met de duurzame energievoorziening van H2Hub Twente. De ontwikkeling van elektrolyse systemen (maar ook toepassingen van waterstof) vraagt om expertise op alle opleidingsniveaus die nog weinig beschikbaar is. Door de energietransitie neemt de vraag naar deze expertise sterk toe. De kennisinstellingen zijn partner binnen de SPRONG “decentrale waterstof” en zij willen met dit project via praktijkgericht onderzoek expertise binnen de betrokken onderzoekgroepen verder opbouwen. Belangrijk hierin is het leerproces structuur en borging te geven waardoor dit kan doorwerken binnen het onderwijs richting studenten en bedrijfsmedewerkers. De resultaten van dit project worden gedeeld met het netwerk maar ook via bijeenkomsten van de topsector energie en lectorenplatform LEVE. De impact van dit project: expertiseopbouw voor realisatie van decentrale waterstofsystemen als stimulans voor regionale bedrijfsontwikkeling én energietransitie!