Background:Current technology innovations, such as wearables, have caused surprising reactions and feelings of deep connection to devices. Some researchers are calling mobile and wearable technologies cognitive prostheses, which are intrinsically connected to individuals as if they are part of the body, similar to a physical prosthesis. Additionally, while several studies have been performed on the phenomenology of receiving and wearing a physical prosthesis, it is unknown whether similar subjective experiences arise with technology.Objective:In one of the first qualitative studies to track wearables in a longitudinal investigation, we explore whether a wearable can be embodied similar to a physical prosthesis. We hoped to gain insights and compare the phases of embodiment (ie, initial adjustment to the prosthesis) and the psychological responses (ie, accept the prosthesis as part of their body) between wearables and limb prostheses. This approach allowed us to find out whether this pattern was part of a cyclical (ie, period of different usage intensity) or asymptotic (ie, abandonment of the technology) pattern.Methods:We adapted a limb prosthesis methodological framework to be applied to wearables and conducted semistructured interviews over a span of several months to assess if, how, and to what extent individuals come to embody wearables similar to prosthetic devices. Twelve individuals wore fitness trackers for 9 months, during which time interviews were conducted in the following three phases: after 3 months, after 6 months, and at the end of the study after 9 months. A deductive thematic analysis based on Murray’s work was combined with an inductive approach in which new themes were discovered.Results:Overall, the individuals experienced technology embodiment similar to limb embodiment in terms of adjustment, wearability, awareness, and body extension. Furthermore, we discovered two additional themes of engagement/reengagement and comparison to another device or person. Interestingly, many participants experienced a rarely reported phenomenon in longitudinal studies where the feedback from the device was counterintuitive to their own beliefs. This created a blurring of self-perception and a dilemma of “whom” to believe, the machine or one’s self.Conclusions:There are many similarities between the embodiment of a limb prosthesis and a wearable. The large overlap between limb and wearable embodiment would suggest that insights from physical prostheses can be applied to wearables and vice versa. This is especially interesting as we are seeing the traditionally “dumb” body prosthesis becoming smarter and thus a natural merging of technology and body. Future longitudinal studies could focus on the dilemma people might experience of whether to believe the information of the device over their own thoughts and feelings. These studies might take into account constructs, such as technology reliance, autonomy, and levels of self-awareness.
DOCUMENT
The use of in-body wearable devices is increasing in the healthcare sector, given their capacity to diagnose diseases and monitor health conditions. At the same time, some of these devices have entered the market and are being researched for use in workplace settings to enhance workers’ health and safety. However, neither specific EU legislation nor national law currently regulates the use of in-body wearables in employment, raising questions about the safeguarding of workers’ fundamental rights to privacy and data protection. Addressing the challenges posed by this regulatory gap, this article explores whether the European legislative framework employed in the healthcare sector for medical devices could be applied to the use of in-body wearables in employment settings. It also discusses the application of a key principle of the General Data Protection Regulation when in-body wearables are used in the workplace: lawfulness.
MULTIFILE
This paper reports on the first stage of a research project1) that aims to incorporate objective measures of physical activity into health and lifestyle surveys. Physical activity is typically measured with questionnaires that are known to have measurement issues, and specifically, overestimate the amount of physical activity of the population. In a lab setting, 40 participants wore four different sensors on five different body parts, while performing various activities (sitting, standing, stepping with two intensities, bicycling with two intensities, walking stairs and jumping). During the first four activities, energy expenditure was measured by monitoring heart rate and the gas volume of in‐ and expired O2 and CO2. Participants subsequently wore two sensor systems (the ActivPAL on the thigh and the UKK on the waist) for a week. They also kept a diary keeping track of their physical activities, work and travel hours. Machine learning algorithms were trained with different methods to determine which sensor and which method was best able to differentiate the various activities and the intensity with which they were performed. It was found that the ActivPAL had the highest overall accuracy, possibly because the data generated on the upper tigh seems to be best distinguishing between different types of activities and therefore led to the highest accuracy. Accuracy could be slightly increased by including measures of heartrate. For recognizing intensity, three different measures were compared: allocation of MET values to activities (used by ActivPAL), median absolute deviation, and heart rate. It turns out that each method has merits and disadvantages, but median absolute deviation seems to be the most promishing metric. The search for the best method of gauging intensity is still ongoing. Subsequently, the algorithms developed for the lab data were used to determine physical activity in the week people wore the devices during their everyday activities. It quickly turned out that the models are far from ready to be used on free living data. Two approaches are suggested to remedy this: additional research with meticulously labelled free living data, e.g., by combining a Time Use Survey with accelerometer measurements. The second is to focus on better determining intensity of movement, e.g., with the help of unsupervised pattern recognition techniques. Accuracy was but one of the requirements for choosing a sensor system for subsequent research and ultimate implementation of sensor measurement in health surveys. Sensor position on the body, wearability, costs, usability, flexibility of analysis, response, and adherence to protocol equally determine the choice for a sensor. Also from these additional points of view, the activPAL is our sensor of choice.
DOCUMENT
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.