Background: To experience external objects in such a way that they are perceived as an integral part of one's own body is called embodiment. Wearable technology is a category of objects, which, due to its intrinsic properties (eg, close to the body, inviting frequent interaction, and access to personal information), is likely to be embodied. This phenomenon, which is referred to in this paper as wearable technology embodiment, has led to extensive conceptual considerations in various research fields. These considerations and further possibilities with regard to quantifying wearable technology embodiment are of particular value to the mobile health (mHealth) field. For example, the ability to predict the effectiveness of mHealth interventions and knowing the extent to which people embody the technology might be crucial for improving mHealth adherence. To facilitate examining wearable technology embodiment, we developed a measurement scale for this construct. Objective: This study aimed to conceptualize wearable technology embodiment, create an instrument to measure it, and test the predictive validity of the scale using well-known constructs related to technology adoption. The introduced instrument has 3 dimensions and includes 9 measurement items. The items are distributed evenly between the 3 dimensions, which include body extension, cognitive extension, and self-extension.Methods: Data were collected through a vignette-based survey (n=182). Each respondent was given 3 different vignettes, describing a hypothetical situation using a different type of wearable technology (a smart phone, a smart wristband, or a smart watch) with the purpose of tracking daily activities. Scale dimensions and item reliability were tested for their validity and Goodness of Fit Index (GFI). Results: Convergent validity of the 3 dimensions and their reliability were established as confirmatory factor analysis factor loadings45 (>0.70), average variance extracted values40 (>0.50), and minimum item to total correlations50 (>0.40) exceeded established threshold values. The reliability of the dimensions was also confirmed as Cronbach alpha and composite reliability exceeded 0.70. GFI testing confirmed that the 3 dimensions function as intercorrelated first-order factors. Predictive validity testing showed that these dimensions significantly add to multiple constructs associated with predicting the adoption of new technologies (ie, trust, perceived usefulness, involvement, attitude, and continuous intention). Conclusions: The wearable technology embodiment measurement instrument has shown promise as a tool to measure the extension of an individual's body, cognition, and self, as well as predict certain aspects of technology adoption. This 3-dimensional instrument can be applied to mixed method research and used by wearable technology developers to improve future versions through such things as fit, improved accuracy of biofeedback data, and customizable features or fashion to connect to the users' personal identity. Further research is recommended to apply this measurement instrument to multiple scenarios and technologies, and more diverse user groups.
DOCUMENT
Despite assumptions that wearable self-care technologies such as smart wristbands and smart watches help users to monitor and self-manage health in daily life, adherence rates are often quite low. In an effort to better understand what determines adherence to wearable self-care technologies, researchers have started to consider the extent to which a technology is perceived as being part of the user (i.e., technology embodiment) and the extent to which users feel they can influence reaching their health goals (i.e., empowerment). Although both concepts are assumed to determine adherence, few studies have empirically validated their influence. Furthermore, the relationships between technology embodiment, empowerment, and adherence to wearable self-care technology have also not been addressed. Drawing upon embodied theory and embodiment cognition theory, this research paper introduces and empirically validates ‘embodied empowerment’ as a predictor of adherence to wearable self-care technology. Using partial least squares structural equation modeling and multigroup analysis on a dataset of 317 wearable self-care technology users, we find empirical evidence of the validity of embodied empowerment as a determinant of adherence. We also discuss the implications for research and practice.
DOCUMENT
Background:Current technology innovations, such as wearables, have caused surprising reactions and feelings of deep connection to devices. Some researchers are calling mobile and wearable technologies cognitive prostheses, which are intrinsically connected to individuals as if they are part of the body, similar to a physical prosthesis. Additionally, while several studies have been performed on the phenomenology of receiving and wearing a physical prosthesis, it is unknown whether similar subjective experiences arise with technology.Objective:In one of the first qualitative studies to track wearables in a longitudinal investigation, we explore whether a wearable can be embodied similar to a physical prosthesis. We hoped to gain insights and compare the phases of embodiment (ie, initial adjustment to the prosthesis) and the psychological responses (ie, accept the prosthesis as part of their body) between wearables and limb prostheses. This approach allowed us to find out whether this pattern was part of a cyclical (ie, period of different usage intensity) or asymptotic (ie, abandonment of the technology) pattern.Methods:We adapted a limb prosthesis methodological framework to be applied to wearables and conducted semistructured interviews over a span of several months to assess if, how, and to what extent individuals come to embody wearables similar to prosthetic devices. Twelve individuals wore fitness trackers for 9 months, during which time interviews were conducted in the following three phases: after 3 months, after 6 months, and at the end of the study after 9 months. A deductive thematic analysis based on Murray’s work was combined with an inductive approach in which new themes were discovered.Results:Overall, the individuals experienced technology embodiment similar to limb embodiment in terms of adjustment, wearability, awareness, and body extension. Furthermore, we discovered two additional themes of engagement/reengagement and comparison to another device or person. Interestingly, many participants experienced a rarely reported phenomenon in longitudinal studies where the feedback from the device was counterintuitive to their own beliefs. This created a blurring of self-perception and a dilemma of “whom” to believe, the machine or one’s self.Conclusions:There are many similarities between the embodiment of a limb prosthesis and a wearable. The large overlap between limb and wearable embodiment would suggest that insights from physical prostheses can be applied to wearables and vice versa. This is especially interesting as we are seeing the traditionally “dumb” body prosthesis becoming smarter and thus a natural merging of technology and body. Future longitudinal studies could focus on the dilemma people might experience of whether to believe the information of the device over their own thoughts and feelings. These studies might take into account constructs, such as technology reliance, autonomy, and levels of self-awareness.
DOCUMENT
Purpose: Recent advancements in wearable computing offer opportunities for art galleries to provide a unique experience. However, to ensure successful implementation of this new technology in the visitor industry, it is essential to understand user requirements from a visitor’s point of view. Therefore, the aim of this paper is to investigate visitors’ requirements for the development of a wearable smart glasses augmented reality (AR) application in the museum and art gallery context. Design/methodology/approach: Interviews with 28 art gallery visitors were conducted and an affinity diagram technique was used to analyze the interviews. Findings: The findings reveal that wearable AR is in its infancy and that technical and design issues have to be overcome for a full adoption. It reveals that content requirement, functional requirement, comfort, experience and resistance are important when developing and implementing the wearable AR application in the museum and art gallery contexts. Originality/value: Mapping user requirements in the wearable smart glasses AR context using an affinity diagram is a new approach and therefore contributes to the creation of knowledge in the tourism domain. Practically, the area of wearable technologies and AR within the tourism and visitor industry context is still relatively unexplored, and the present paper provides a first foundation for the implementation of wearable smart glasses AR applications in the museum and art gallery context.
LINK
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
MULTIFILE
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
DOCUMENT
Recent advancements in mobile sensing and wearable technologies create new opportunities to improve our understanding of how people experience their environment. This understanding can inform urban design decisions. Currently, an important urban design issue is the adaptation of infrastructure to increasing cycle and e-bike use. Using data collected from 12 cyclists on a cycle highway between two municipalities in The Netherlands, we coupled location and wearable emotion data at a high spatiotemporal resolution to model and examine relationships between cyclists' emotional arousal (operationalized as skin conductance responses) and visual stimuli from the environment (operationalized as extent of visible land cover type). We specifically took a within-participants multilevel modeling approach to determine relationships between different types of viewable land cover area and emotional arousal, while controlling for speed, direction, distance to roads, and directional change. Surprisingly, our model suggests ride segments with views of larger natural, recreational, agricultural, and forested areas were more emotionally arousing for participants. Conversely, segments with views of larger developed areas were less arousing. The presented methodological framework, spatial-emotional analyses, and findings from multilevel modeling provide new opportunities for spatial, data-driven approaches to portable sensing and urban planning research. Furthermore, our findings have implications for design of infrastructure to optimize cycling experiences.
MULTIFILE
Wearable technologies are being implemented in the health and medical context with increasing frequency. Such technologies offer valuable opportunities to stimulate self-management in these domains. In this context, engagement plays a crucial role. An engaged patient is a patient who is emotionally involved and committed to the therapy or care process. Particularly for children who have to follow some sort of therapy, engagement is important to ensure a successful outcome of the therapy. To design for engagement, a framework based on theories of motivation in child therapy was developed. This framework was applied to the design of a wearable breathing trainer for children with asthma and dysfunctional breathing. As such, the present paper provides knowledge about the implementation of theory on engagement and motivation in design. Expert and first user evaluations found that the resulting prototype is appealing, perceived as useful, and may engage children in breathing training and stimulate self-management. CC BY (https://creativecommons.org/licenses/by/4.0/)
MULTIFILE
As the two prime examples of sport light, running and walking have become very popular sports activities in the past decades. There are references in the literature of similarities between both sports, however these parallels have never been studied. In addition, the current digitalisation of society can have important influences on the further diversification of profiles. Data of a large-scale population survey among runners and walkers (n = 4913) in Flanders (Belgium) were used to study their sociodemographic, sports related and attitudinal characteristics, and wearable usage. The results showed that walkers are more often female, older, lower educated, and less often use wearables. To predict wearable usage, sports-related and attitudinal characteristics are important among runners but not among walkers. Motivational variables to use wearables are important to predict wearable usage among both runners and walkers. Additionally, whether or not the runner or walker registers the heart rate is the most important predictor. The present study highlights similarities and differences between runners and walkers. By adding attitudinal characteristics and including walkers this article provides new insights to the literature, which can be used by policymakers and professionals in the field of sport, exercise and health, and technology developers to shape their services accordingly.
DOCUMENT
The effects of stress may be alleviated when its impact or a decreased stress-resilience are detected early. This study explores whether wearable-measured sleep and resting HRV in police officers can be predicted by stress-related Ecological Momentary Assessment (EMA) measures in preceding days and predict stress-related EMA outcomes in subsequent days. Eight police officers used an Oura ring to collect daily Total Sleep Time (TST) and resting Heart Rate Variability (HRV) and an EMA app for measuring demands, stress, mental exhaustion, and vigor during 15-55 weeks. Vector Autoregression (VAR) models were created and complemented by Granger causation tests and Impulse Response Function visualizations. Demands negatively predicted TST and HRV in one participant. TST negatively predicted demands, stress, and mental exhaustion in two, three, and five participants, respectively, and positively predicted vigor in five participants. HRV negatively predicted demands in two participants, and stress and mental exhaustion in one participant. Changes in HRV lasted longer than those in TST. Bidirectional associations of TST and resting HRV with stress-related outcomes were observed at a weak-to-moderate strength, but not consistently across participants. TST and resting HRV are more consistent predictors of stress-resilience in upcoming days than indicators of stress-related measures in prior days.
DOCUMENT