Individual and unorganized sports with a health-related focus, such as recreational running, have grown extensively in the last decade. Consistent with this development, there has been an exponential increase in the availability and use of electronic monitoring devices such as smartphone applications (apps) and sports watches. These electronic devices could provide support and monitoring for unorganized runners, who have no access to professional trainers and coaches. The purpose of this paper is to gain insight into the characteristics of event runners who use running-related apps and sports watches. This knowledge is useful from research, design, and marketing perspectives to adequately address unorganized runners’ needs, and to support them in healthy and sustainable running through personalized technology. Data used in this study are drawn from the standardized online Eindhoven Running Survey 2014 (ERS14). In total, 2,172 participants in the Half Marathon Eindhoven 2014 completed the questionnaire (a response rate of 40.0%). Binary logistic regressions were used to analyze the impact of socio-demographic variables, running-related variables, and psychographic characteristics on the use of running-related apps and sports watches. Next, consumer profiles were identified. The results indicate that the use of monitoring devices is affected by socio-demographics as well as sports-related and psychographic variables, and this relationship depends on the type of monitoring device. Therefore, distinctive consumer profiles have been developed to provide a tool for designers and manufacturers of electronic running-related devices to better target (unorganized) runners’ needs through personalized and differentiated approaches. Apps are more likely to be used by younger, less experienced and involved runners. Hence, apps have the potential to target this group of novice, less trained, and unorganized runners. In contrast, sports watches are more likely to be used by a different group of runners, older and more experienced runners with higher involvement. Although apps and sports watches may potentially promote and stimulate sports participation, these electronic devices do require a more differentiated approach to target specific needs of runners. Considerable efforts in terms of personalization and tailoring have to be made to develop the full potential of these electronic devices as drivers for healthy and sustainable sports participation.
Recent textile innovations have significantly transformed both the material structures of fibers and fabrics as well as their sphere of use and applications.At the same time, new recycling concepts and methods to re--use textile waste are rapidly being developed and many new ways to make use of recycled and reclaimed fibers have already been found. In this paper, we describe how the development of a new textile, making use of recycled fibers, sparked the development of Textile Reflexes, a robotic textile that can change shape. This paper elaborates on the development of the new textile material, the multidisciplinary approach we take to advance it towards a robotic textile and our first endeavours to implement it in a health & wellbeing context. Textile Reflexes was applied in a vest that supports posture correction and training that was evaluated in a user study. In this way, the paper demonstrates a material and product design study that bridges disciplines and that links to both environmental and social change.doi: 10.21606/dma.2017.610This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
MULTIFILE
Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (experience sampling implementing Karolinska Sleepiness Scale, KSS ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals’ light exposure. We will implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Ghana, Netherlands, Spain, Sweden, and Turkey (minimum n = 15, target n = 30 per site, minimum n = 90, target n = 180 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
MULTIFILE