Individual and unorganized sports with a health-related focus, such as recreational running, have grown extensively in the last decade. Consistent with this development, there has been an exponential increase in the availability and use of electronic monitoring devices such as smartphone applications (apps) and sports watches. These electronic devices could provide support and monitoring for unorganized runners, who have no access to professional trainers and coaches. The purpose of this paper is to gain insight into the characteristics of event runners who use running-related apps and sports watches. This knowledge is useful from research, design, and marketing perspectives to adequately address unorganized runners’ needs, and to support them in healthy and sustainable running through personalized technology. Data used in this study are drawn from the standardized online Eindhoven Running Survey 2014 (ERS14). In total, 2,172 participants in the Half Marathon Eindhoven 2014 completed the questionnaire (a response rate of 40.0%). Binary logistic regressions were used to analyze the impact of socio-demographic variables, running-related variables, and psychographic characteristics on the use of running-related apps and sports watches. Next, consumer profiles were identified. The results indicate that the use of monitoring devices is affected by socio-demographics as well as sports-related and psychographic variables, and this relationship depends on the type of monitoring device. Therefore, distinctive consumer profiles have been developed to provide a tool for designers and manufacturers of electronic running-related devices to better target (unorganized) runners’ needs through personalized and differentiated approaches. Apps are more likely to be used by younger, less experienced and involved runners. Hence, apps have the potential to target this group of novice, less trained, and unorganized runners. In contrast, sports watches are more likely to be used by a different group of runners, older and more experienced runners with higher involvement. Although apps and sports watches may potentially promote and stimulate sports participation, these electronic devices do require a more differentiated approach to target specific needs of runners. Considerable efforts in terms of personalization and tailoring have to be made to develop the full potential of these electronic devices as drivers for healthy and sustainable sports participation.
Recent textile innovations have significantly transformed both the material structures of fibers and fabrics as well as their sphere of use and applications.At the same time, new recycling concepts and methods to re--use textile waste are rapidly being developed and many new ways to make use of recycled and reclaimed fibers have already been found. In this paper, we describe how the development of a new textile, making use of recycled fibers, sparked the development of Textile Reflexes, a robotic textile that can change shape. This paper elaborates on the development of the new textile material, the multidisciplinary approach we take to advance it towards a robotic textile and our first endeavours to implement it in a health & wellbeing context. Textile Reflexes was applied in a vest that supports posture correction and training that was evaluated in a user study. In this way, the paper demonstrates a material and product design study that bridges disciplines and that links to both environmental and social change.doi: 10.21606/dma.2017.610This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
MULTIFILE
Abstract Background: With the growing shortage of nurses, labor-saving technology has become more important. In health care practice, however, the fit with innovations is not easy. The aim of this study is to analyze the development of a mobile input device for electronic medical records (MEMR), a potentially labor-saving application supported by nurses, that failed to meet the needs of nurses after development. Method: In a case study, we used an axiomatic design framework as an evaluation tool to visualize the mismatches between customer needs and the design parameters of the MEMR, and trace these mismatches back to (preliminary) decisions in the development process. We applied a mixed-method research design that consisted of analyzing of 118 external and internal files and working documents, 29 interviews and shorter inquiries, a user test, and an observation of use. By factoring and grouping the findings, we analyzed the relevant categories of mismatches. Results: The involvement of nurses during the development was extensive, but not all feedback was, or could not be, used effectively to improve the MEMR. The mismatches with the most impact were found to be: (1) suboptimal supportive technology, (2) limited functionality of the app and input device, and (3) disruption of nurses’ workflow. Most mismatches were known by the IT department when the MEMR was offered to the units as a product. Development of the MEMR came to a halt because of limited use. Conclusion: Choices for design parameters, made during the development of labor-saving technology for nurses, may conflict with the customer needs of nurses. Even though the causes of mismatches were mentioned by the IT department, the nurse managers acquired the MEMR based on the idea behind the app. The effects of the chosen design parameters should not only be compared to the customer needs, but also be assessed with nurses and nurse managers for the expected effect on the workflow.
LINK