Paralympic wheelchair athletes solely depend on the power of their upper-body for their on-court wheeled mobility as well as for performing sport-specific actions in ball sports, like a basketball shot or a tennis serve. The objective of WheelPower is to improve the power output of athletes in their sport-specific wheelchair to perform better in competition. To achieve this objective the current project systematically combines the three Dutch measurement innovations (WMPM, Esseda wheelchair ergometer, PitchPerfect system) to monitor a large population of athletes from different wheelchair sports resulting in optimal power production by wheelchair athletes during competition. The data will be directly implemented in feedback tools accessible to athletes, trainers and coaches which gives them the unique opportunity to adapt their training and wheelchair settings for optimal performance. Hence, the current consortium facilitates mass and focus by uniting scientists and all major Paralympic wheelchair sports to monitor the power output of many wheelchair athletes under field and lab conditions, which will be assisted by the best data science approach to this challenge.
The aim of this study was to develop and describe a wheelchair mobility performance test in wheelchair basketball and to assess its construct validity and reliability. To mimic mobility performance of wheelchair basketball matches in a standardised manner, a test was designed based on observation of wheelchair basketball matches and expert judgement. Forty-six players performed the test to determine its validity and 23 players performed the test twice for reliability. Independent-samples t-tests were used to assess whether the times needed to complete the test were different for classifications, playing standards and sex. Intraclass correlation coefficients (ICC) were calculated to quantify reliability of performance times. Males performed better than females (P < 0.001, effect size [ES] = −1.26) and international men performed better than national men (P < 0.001, ES = −1.62). Performance time of low (≤2.5) and high (≥3.0) classification players was borderline not significant with a moderate ES (P = 0.06, ES = 0.58). The reliability was excellent for overall performance time (ICC = 0.95). These results show that the test can be used as a standardised mobility performance test to validly and reliably assess the capacity in mobility performance of elite wheelchair basketball athletes. Furthermore, the described methodology of development is recommended for use in other sports to develop sport-specific tests. “This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Sports Sciences" on 01/16/17, available online: https://doi.org/10.1080/02640414.2016.1276613. LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/rienkvdslikke/
MULTIFILE
Purpose: To provide insight on the effect of wheelchair settings on wheelchair mobility performance (WMP). Methods: Twenty elite wheelchair basketball athletes of low (n = 10) and high classification (n = 10) were tested in a wheelchair-basketball-directed field test. Athletes performed the test in their own wheelchairs, which were modified for 5 additional conditions regarding seat height (high–low), mass (central–distributed), and grip. The previously developed inertial-sensor-based WMP monitor was used to extract wheelchair kinematics in all conditions. Results: Adding mass showed most effect on WMP, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had an effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low- and high-classified athletes. Conclusions: The WMP monitor showed sensitivity to detect performance differences due to the small changes in wheelchair configuration. Distributed additional mass had the most effect on WMP, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low- and high-classified athletes. Athletes, coaches, and wheelchair experts are provided with insight into the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sport practice, in their search for the best wheelchair–athlete combination. https://doi.org/10.1123/ijspp.2017-0641 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE