Objective: This study aimed to investigate which characteristics of athlete, wheelchair and athlete-wheelchair interface are the best predictors of wheelchair basketball mobility performance. Design: A total of 60 experienced wheelchair basketball players performed a wheelchair mobility performance test to assess their mobility performance. To determine which variables were the best predictors of mobility performance, forward stepwise linear regression analyses were performed on a set of 33 characteristics, including 10 athlete, 19 wheelchair, and 4 athlete-wheelchair interface characteristics. Results: A total of 8 of the characteristics turned out to be significant predictors of wheelchair basketball mobility performance. Classification, experience, maximal isometric force, wheel axis height, and hand rim diameter—which both are interchangeable with each other and wheel diameter—camber angle, and the vertical distance between shoulder and rear wheel axis—which was interchangeable with seat height—were positively associated with mobility performance. The vertical distance between the front seat and the footrest was negatively associated with mobility performance. Conclusion: With this insight, coaches and biomechanical specialists are provided with statistical findings to determine which characteristics they could focus on best to improve mobility performance. Six out of 8 predictors are modifiable and can be optimized to improve mobility performance. These adjustments could be carried out both in training (maximal isometric force) and in wheelchair configurations (eg, camber angle). https://doi.org/10.1123/jsr.2017-0142 LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/rienkvdslikke/
MULTIFILE
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
DOCUMENT
OBJECTIVE: The purpose of this study was to determine the effects of seat height, wheelchair mass and grip on mobility performance among wheelchair basketball players and to investigate whether these effects differ between classification levels. METHODS: Elite wheelchair basketball players with a low (n= 11, class 1 or 1.5) or high (n= 10, class 4 or 4.5) classification performed a field-based wheelchair mobility performance (WMP) test. Athletes performed the test six times in their own wheelchair, of which five times with different configurations, a higher or lower seat height, with additional distally or centrally located extra mass, and with gloves. The effects of these configurations on performance times and the interaction with classification were determined. RESULTS: Total performance time on the WMP test was significantly reduced when using a 7.5% lower seat height. Additional mass (7.5%) and glove use did not lead to changes in performance time. Effects were the same for the two classification levels. CONCLUSIONS: The methodology can be used in a wheelchair fitting process to search for the optimal individual configuration to enhance mobility performance. Out of all adjustments possible, this study focused on seat height, mass and grip only. Further research can focus on these possible adjustments to optimize mobility performance in wheelchair basketball. DOI: 10.3233/TAD-190251 LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.
DOCUMENT
In this study we measured the performance times on the Wheelchair Mobility Performance (WMP) test during different test conditions to see if the performance times changed when wheelchair settings were changed. The overall performance time on the WMP test increased when the tire pressure was reduced and also when extra mass was attached to the wheelchair. It can be concluded that the WMP test is sensitive to changes in wheelchair settings. It is recommended to use this field-based test in further research to investigate the effect of wheelchair settings on mobility performance time. Objective: The Wheelchair Mobility Performance (WMP) test is a reliable and valid measure to assess mobility performance in wheelchair basketball. The aim of this study was to examine the sensitivity to change of the WMP test by manipulating wheelchair configurations. Methods: Sixteen wheelchair basketball players performed the WMP test 3 times in their own wheelchair: (i) without adjustments (“control condition”); (ii) with 10 kg additional mass (“weighted condition”); and (iii) with 50% reduced tyre pressure (“tyre condition”). The outcome measure was time (s). If paired t-tests were significant (p < 0.05) and differences between conditions were larger than the standard error of measurement, the effect sizes (ES) were used to evaluate the sensitivity to change. ES values ≥0.2 were regarded as sensitive to change. Results: The overall performance times for the manipulations were significantly higher than the control condition, with mean differences of 4.40 s (weight – control, ES = 0.44) and 2.81 s (tyre – control, ES = 0.27). The overall performance time on the WMP test was judged as sensitive to change. For 8 of the 15 separate tasks on the WMP test, the tasks were judged as sensitive to change for at least one of the manipulations. Conclusion: The WMP test can detect change in mobility performance when wheelchair configurations are manipulated. https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-2341
MULTIFILE
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
DOCUMENT
Paralympic wheelchair athletes solely depend on the power of their upper-body for their on-court wheeled mobility as well as for performing sport-specific actions in ball sports, like a basketball shot or a tennis serve. The objective of WheelPower is to improve the power output of athletes in their sport-specific wheelchair to perform better in competition. To achieve this objective the current project systematically combines the three Dutch measurement innovations (WMPM, Esseda wheelchair ergometer, PitchPerfect system) to monitor a large population of athletes from different wheelchair sports resulting in optimal power production by wheelchair athletes during competition. The data will be directly implemented in feedback tools accessible to athletes, trainers and coaches which gives them the unique opportunity to adapt their training and wheelchair settings for optimal performance. Hence, the current consortium facilitates mass and focus by uniting scientists and all major Paralympic wheelchair sports to monitor the power output of many wheelchair athletes under field and lab conditions, which will be assisted by the best data science approach to this challenge.
DOCUMENT
Daily wheelchair ambulation is seen as a risk factor for shoulder problems, which are prevalent in manual wheelchair users. To examine the long-term effect of shoulder load from daily wheelchair ambulation on shoulder problems, quantification is required in real-life settings. In this study, we describe and validate a comprehensive and unobtrusive methodology to derive clinically relevant wheelchair mobility metrics (WCMMs) from inertial measurement systems (IMUs) placed on the wheelchair frame and wheel in real-life settings. The set of WCMMs includes distance covered by the wheelchair, linear velocity of the wheelchair, number and duration of pushes, number and magnitude of turns and inclination of the wheelchair when on a slope. Data are collected from ten able-bodied participants, trained in wheelchair-related activities, who followed a 40 min course over the campus. The IMU-derived WCMMs are validated against accepted reference methods such as Smartwheel and video analysis. Intraclass correlation (ICC) is applied to test the reliability of the IMU method. IMU-derived push duration appeared to be less comparable with Smartwheel estimates, as it measures the effect of all energy applied to the wheelchair (including thorax and upper extremity movements), whereas the Smartwheel only measures forces and torques applied by the hand at the rim. All other WCMMs can be reliably estimated from real-life IMU data, with small errors and high ICCs, which opens the way to further examine real-life behavior in wheelchair ambulation with respect to shoulder loading. Moreover, WCMMs can be applied to other applications, including health tracking for individual interest or in therapy settings.
DOCUMENT
Purpose: To provide insight on the effect of wheelchair settings on wheelchair mobility performance (WMP). Methods: Twenty elite wheelchair basketball athletes of low (n = 10) and high classification (n = 10) were tested in a wheelchair-basketball-directed field test. Athletes performed the test in their own wheelchairs, which were modified for 5 additional conditions regarding seat height (high–low), mass (central–distributed), and grip. The previously developed inertial-sensor-based WMP monitor was used to extract wheelchair kinematics in all conditions. Results: Adding mass showed most effect on WMP, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had an effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low- and high-classified athletes. Conclusions: The WMP monitor showed sensitivity to detect performance differences due to the small changes in wheelchair configuration. Distributed additional mass had the most effect on WMP, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low- and high-classified athletes. Athletes, coaches, and wheelchair experts are provided with insight into the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sport practice, in their search for the best wheelchair–athlete combination. https://doi.org/10.1123/ijspp.2017-0641 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
Purpose: Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity. New inertial sensor-based measurement methods applied in match play and field tests allow for more precise and objective estimates of the impairment effect on wheelchair-mobility performance. The aim of the present research was to evaluate whether these measures could offer an alternative point of view for classification. Methods: Six standard wheelchair-mobility performance outcomes of different classification groups were measured in match play (n = 29), as well as best possible performance in a field test (n = 47). Results: In match results, a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher-classification group. Three outcomes differed significantly between the low- and mid-classified groups, and 1, between the mid- and high-classified groups. In best performance (field test), there was a split between the low- and mid-classified groups (5 out of 6 outcomes differed significantly) but hardly any difference between the mid- and high-classified groups. This observed split was confirmed by cluster analysis, revealing the existence of only 2 performance-based clusters. Conclusions: The use of inertial sensor technology to obtain objective measures of wheelchair-mobility performance, combined with a standardized field test, produced alternative views for evidence-based classification. The results of this approach provide arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and field testing could enhance evaluation of classification guidelines, as well as individual athlete performance. DOI: https://doi.org/10.1123/ijspp.2017-0326 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/
MULTIFILE