In this study we measured the performance times on the Wheelchair Mobility Performance (WMP) test during different test conditions to see if the performance times changed when wheelchair settings were changed. The overall performance time on the WMP test increased when the tire pressure was reduced and also when extra mass was attached to the wheelchair. It can be concluded that the WMP test is sensitive to changes in wheelchair settings. It is recommended to use this field-based test in further research to investigate the effect of wheelchair settings on mobility performance time. Objective: The Wheelchair Mobility Performance (WMP) test is a reliable and valid measure to assess mobility performance in wheelchair basketball. The aim of this study was to examine the sensitivity to change of the WMP test by manipulating wheelchair configurations. Methods: Sixteen wheelchair basketball players performed the WMP test 3 times in their own wheelchair: (i) without adjustments (“control condition”); (ii) with 10 kg additional mass (“weighted condition”); and (iii) with 50% reduced tyre pressure (“tyre condition”). The outcome measure was time (s). If paired t-tests were significant (p < 0.05) and differences between conditions were larger than the standard error of measurement, the effect sizes (ES) were used to evaluate the sensitivity to change. ES values ≥0.2 were regarded as sensitive to change. Results: The overall performance times for the manipulations were significantly higher than the control condition, with mean differences of 4.40 s (weight – control, ES = 0.44) and 2.81 s (tyre – control, ES = 0.27). The overall performance time on the WMP test was judged as sensitive to change. For 8 of the 15 separate tasks on the WMP test, the tasks were judged as sensitive to change for at least one of the manipulations. Conclusion: The WMP test can detect change in mobility performance when wheelchair configurations are manipulated. https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-2341
MULTIFILE
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
DOCUMENT
The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.
DOCUMENT