Samenvatting: Nu gemeenten grote ambities hebben voor zero emissie stadslogistiek en dat ook omzetten in harde beleidsmaatregelen voor 2025 wordt de urgentie om in actie te komen voor logistieke bedrijven steeds groter. Servicelogistiek is als deel van stadslogistiek onderbelicht en veelvuldig over het hoofd gezien, zowel in onderzoek als in beleid. In 2017 is de Hogeschool van Amsterdam, mede gefinancierd door SIA, in samenwerking met UNETOVNI en de gemeente Amsterdam een exploratief onderzoek gestart naar servicelogistiek in de stad. In dit artikel de bevindingen van dat onderzoek en een vooruitblik hoe verschillende kluscategoriën en nieuwe technologieën gaan bijdragen aan servicelogistiek met cargobikes en elektrische bestelbussen.
MULTIFILE
The Utrecht SBE16 Conference. From the introduction: "The conference is part of the Sustainable Built conference series and is as such considered to be part of the pre-eminent international conference series on sustainable building and construction endorsed by iiSBE, UNEP-SBO and FIDIC. The Utrecht SBE16 conference is hosted by the Centre of Expertise Smart Sustainable Cities of HU University of Applied Sciences Utrecht, in partnership with six Dutch Universities of Applied Sciences (Avans, Saxion, Rotterdam, The Hague, Zuyd, InHolland) and the Utrecht Sustainability Institute (USI). The Transition Zero conference provides us with a unique opportunity to meet transition professionals in urban sustainability from all over Europe and beyond and to learn about the latest developments and best (inter)national practices in urban sustainability. The rich interest in the conference, made it possible to offer research as well as practitioner-driven tracks on topics related to the conference title. The conference brought together excellent future-minded practitioners, researchers and thought leaders from the R&I community, specialists and professionals on zero energy homes and transition of the built environment."
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
CILOLAB contributes to the transition of the UFT-system towards zero emission city logistics in 2025 by examining, developing and enabling alternatives for urban logistics activities. Specifically, CILOLAB focuses on the transferability and scaling-up of successful logistics initiatives; i.e. concepts that facilitate decoupling between transport towards and in cities. CILOLAB is an action-driven partnership where cities cooperate with transport operators, interest groups, research institutes and societal partners and collaboratively develop new approaches for urban logistical solutions. Through continuous monitoring and impact assessment these solutions are evaluated and further developed within this experimentation environment, all contributing to the CILOLAB ambition.
CILOLAB contributes to the transition of the UFT-system towards zero emission city logistics in 2025 by examining, developing and enabling alternatives for urban logistics activities. Specifically, CILOLAB focuses on the transferability and scaling-up of successful logistics initiatives; i.e. concepts that facilitate decoupling between transport towards and in cities. CILOLAB is an action-driven partnership where cities cooperate with transport operators, interest groups, research institutes and societal partners and collaboratively develop new approaches for urban logistical solutions. Through continuous monitoring and impact assessment these solutions are evaluated and further developed within this experimentation environment, all contributing to the CILOLAB ambition.