With the approach of the zero emission zone implementation in 30-40 cities mandated by the Dutch Klimaatakkord, comes the need to determine whether the SMEs located within these zones are aware of the coming changes and if they are, how far they have come in their preparation. This paper delves into the development of the zero emission city logistics maturity model tool which is used to indicate the progress of these small to medium enterprises in light of reaching fully zero emission city logistics operations. The paper starts off with a review of existing maturity models which forms the baseline for the zero emission city logistics maturity model in rubric form. A QuickScan analysis is developed in order to facilitate data collection by students who then approach businesses and use the QuickScan results to benchmark the businesses progress against other businesses. This paper then concludes with the preliminary results from the initial QuickScans performed by HBO level students.
DOCUMENT
Abstract The Government of the Netherlands wants to be energy neutral by 2050 (Rijksoverheid, sd). A transition towards non-fossil energy sources also affects transport, which is one of the industries significantly contributing to CO2 emission (Centraal Bureau Statistiek, 2019). Road authorities at municipalities and provinces want a shift from fossil fuel-consuming to zero-emission transport choices by their inhabitants. For this the Province of Utrecht has data available. However, they struggle how to deploy data to positively influence inhabitants' mobility behavior. A problem analysis scoped the research and a survey revealed the gap between the province's current data-item approach that is infrastructure oriented and the required approach that adopts traveler’s personas to successfully stimulate cycling. For this more precisely defined captured data is needed and the focus should shift from already motivated cyclists to non-cyclers.
DOCUMENT
This paper examines how the transition management approach for sustainability transitions can be applied to the case of how Rotterdam established a zero-emission zone (ZEZ) for city logistics, aiming to stimulate the adoption of electric freight vehicles, enhance logistics efficiency and improve liveability. The study highlights the challenges and strategies involved in transitioning to a sustainable city logistics system. Through a case study methodology, the paper explores the development and implementation of Rotterdam's ZEZ, emphasising the importance of stakeholder collaboration, strategic planning, and continuous monitoring. The findings provide valuable insights into the practical application of transition management theory in city logistics, offering best practices for other cities aiming to achieve similar sustainability goals.
DOCUMENT
The Dutch government, in alignment with the Paris climate agreement, has expressed the ambition to reduce CO 2 emissions in the Netherlands by 49% in 2030 compared to 1990. As freight transport is recognized as a serious CO 2 emitter, this sector is confronted with a substantial part of the target. For cities, the reduction of the urban freight transport emissions is, next to the CO 2 reduction, also important to improve the air quality. Dutch municipalities take an active role in coordination, facilitation and acceleration of the emission reduction processes, not only via regulation but also by using their public procurement power. This paper describes the City of Rotterdam's experiences from the EU Horizon 2020 BuyZET project. This project was launched in November 2016 and includes the cities of Rotterdam, Oslo and Copenhagen. The project aims at understanding and optimising the impact of public procurement activities on transport patterns and emissions in cities as well as to find innovative and sustainable delivery solutions for goods and services-related transport in order to reduce emissions.
MULTIFILE
From a circular standpoint it is interesting to reuse as much as possible construction and demolition waste (CDW) into new building projects. In most cases CDW will not be directly reusable and will need to be processed and stored first. In order to turn this into a successful business case CDW will need to be reused on a large scale. In this paper we present the concept of a centralized and coordinated location in the City of Utrecht where construction and demolition waste is collected, sorted, worked, stored for reuse, or shipped elsewhere for further processing in renewed materials. This has expected advantages for the amount of material reuse, financial advantages for firms and clients, generating employability in the logistics and processing of materials, optimizing the transport and distribution of materials through the city, and thus the reduction of emissions and congestion. In the paper we explore the local facility of a Circular Hub, and the potential effects on circular reuse, and other effects within the City of Utrecht.
DOCUMENT
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
Rond de invoering van zero emissies zones voor stadslogistiek spelen er bij overheden verschillende vraagstukken. Doordat er beperkt beleid gemaakt werd op stedelijke logistiek, is er echter nooit de behoefte geweest om een heel gedetailleerd beeld van dit verkeer te krijgen. Stedelijke logistiek omvat bovendien een breed scala aan commerciële voertuigbewegingen en niet enkel het transport van goederen. Om de ‘logistiek’ op stadsniveau beter in kaart te brengen, zijn er verschillende data beschikbaar die met een ander doeleinde zijn verzameld. In dit artikel wordt er op basis van de beschikbare data een inschatting gemaakt van de omvang van de stedelijke logistiek en de effecten van een zero emissie zone. Hiermee kan beter in kaart gebracht worden wat de verwachte impact van de invoering van zero emissie zones is, inclusief het uitstraaleffect. Het instellen van een zone leidt naast emissieloos transport mogelijk ook tot een verandering in kilometers omdat een vervoerder zijn/haar gedrag moet aanpassen. De mogelijke gedragsreacties zijn echter wel in sterke mate segment-specifiek. De effecten van de invoering van een zero emissie zone op CO2-uitstoot en gereden kilometers per segment, binnen en buiten de zone, zijn door middel van een case studie met een zone in Utrecht in kaart gebracht met de Decamod-gedragsmodule. Resultaten laten zien dat het effect van de invoering van een zero emissie zone met name buiten de zone tot een hoge CO2-reductie leidt. Toekomstig beleid moet daarom vooral gericht zijn op het ondersteunen van de overgang van kilometers gerelateerd aan de zone naar een nul-emissie alternatief alsook het reduceren van voertuigkilometers.
DOCUMENT
Purpose Electric freight vehicles (EFVs) are one of the solutions to improve city logistics’ sustainability. EFVs, that are electric powered light and heavy vehicles with a number plate, have the potential to make zero emission city logistics possible within the urban area. However, although trials have been undertaken for the last years, large-scale usage of EFVs in city logistics does not occur yet. EFVs are technically possi- ble, but the implementation of EFVs in practice is relatively limited. Design This chapter examines by reviewing current and past EFV implementations, what are the challenges, barriers and success factors for EFVs in city logistics operations. EFVs have especially positive envir- onmental effects, but are overall usually more expensive (especially in procurement) than conventional vehicles. Besides, other technical and operational issues remain to be solved, and many uncertainties still exist on long-term usage. Findings Three main barriers for large-scale EFV uptake are identi- fied. The current logistics concepts are developed for conventional vehi- cles and should be redesigned to fit EFVs better. Local authorities’ support is essential in order to find a positive (or not too negative) business case. And EFV implementation requires companies that want to be sustainable. This contribution presents examples of how some companies or authorities deal with these barriers. Value This chapter concludes by identifying elements that are necessary for acceleration of EFV uptake in city logistics operations.
LINK
DOCUMENT