Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
In zijn inaugurele rede gaat Bert Plomp in op het belang van praktijkgericht onderzoek voor de verdere ontwikkeling en implementatie van zonnestroom en op het gebruik van zonnestroom voor schoon en stil vervoer en mobiliteit. Ook de ambities van het lectoraat en de hoofdlijnen en speerpunten van het onderzoek komen aan bod en de relaties met het onderwijs, het regionale bedrijfsleven en lopende projecten
DOCUMENT
De gemeente Alkmaar heeft binnenkort een energieleverend geluidscherm en wil graag naast dit geluidscherm ook nog bekijken of het interessant is om een buurtbatterij te plaatsen. Deze batterij zal opgeladen worden met stroom vanuit het geluidscherm. De vraag vanuit de gemeente is: Wat zijn de voorwaarden voor een positieve business case voor gemeente Alkmaar en buurtbewoners om lokaal opgeslagen energie te leveren aan buurtbewoners? Het onderzoek dat is uitgevoerd heeft gekeken naar de verschillende toepassingen van een buurtbatterij. Na een gesprek met de opdrachtgever zijn verschillende scenario’s naar voren gekomen; een laadplein, Frequency Containment Reserve (FCR) en energiehandel. Er kan geconcludeerd worden dat de combinatie van het laadplein en FCR het meest positieve en realistische resultaat geeft. De terugverdientijd ligt, zonder rekening te houden met de opbrengstwaarde, op iets minder dan 9 jaar en dit is dan ook het moment dat het scenario winstgevend wordt. Tot slot: stroom van zonnepanelen kan, zonder buurtbatterij, altijd het net op. Echter is het net veelvuldig overbelast en daarom is het niet altijd gewenst dat er stroom wordt geleverd. De zonnepanelen komen dus meer tot zijn recht wanneer deze aan een batterij gekoppeld zijn. Dit is omdat het stroom dat niet altijd met het net verbonden is, maar enkel als er vraag is naar stroom en dan pas aan het net wordt geleverd. Tevens zijn er meerdere mogelijkheden met een batterij, namelijk het ontladen van het net of het mogelijk maken tot laden van elektrische auto’s, en dit geeft meer voordelen aan de batterij en ook meerwaarde aan de geluidswal. Het advies is dan ook om dit onderzoek verder voort te zetten en de mogelijkheden te bekijken van het waar maken van een buurtbatterij in de nabije toekomst
DOCUMENT
Vrijwel elk evenement heeft een backstage area waar tijdelijke stroomvoorziening op diesel worden geplaatst. Bij deze test wordt de waterstof Volta op een dergelijke backstage area geplaatst in plaats van of naast een andere tijdelijke stroomvoorziening. Tijdens de test willen de HAN en Volta in aanvulling op het RAAK-mkb project H2-Modus data verzamelen over de werking van het waterstofsysteem en de processen rondom veiligheid en vergunningen. In tegenstelling tot een eenvoudig te plaatsen dieselgenerator dient bij het plaatsen van een waterstof systeem rekening gehouden te worden met een veiligheidszone rondom het systeem. Waterstof is namelijk een zeer licht ontvlambaar en explosief gas. Een van de testdoelen is dan ook bewustwording creëren van deze extra voorzorgmaatregelen. Dit bewustwordingstraject begint al bij de aanvraag van een waterstofsysteem en loopt tot na de afbouw van het evenement. We sluiten hierbij zo veel mogelijk apparaten aan die in andere gevallen door dieselgeneratoren van stroom worden voorzien. Het is een grote uitdaging voor bedrijven om de businesscase van toepassingen op waterstof positief te maken. Het H2-Modus project ontwikkeld daarom modellen en tools die de zogenaamde Total Cost of Ownership minimaliseert en drempels in de ontwikkeling en toepassing in de praktijk minimaliseert en verwerkt dit in een waterstof handbook speciaal voor deze bedrijven. Met de data uit deze test deze modellen en tools extra gevalideerd en verbeterd worden.
In dit project wordt de techno-economische en sociale haalbaarheid getest van een zonwering systeem dat tevens zonne-stroom en –warmte opwekt, passieve ruimtekoeling levert, en een deel van het natuurlijk daglicht binnenlaat. Het gaat om een zonne-energie leverende lamel, met een zeer geringe inbouwdiepte waardoor deze binnen reguliere vensterbanken past en daardoor goed inpasbaar is in de bestaande bouw met een eerste toepassing in kantoorpanden en kleine utiliteitsbouw. Het systeem is vernieuwend omdat energiewinning uit glazen elementen bij bestaande bouw nog bijna niet bestaat. Het ZELL systeem is ontworpen om laagdrempelig te installeren te zijn in de bestaande bouw binnen de afmetingen van een vensterbank, door de kleine inbouwdiepte van het systeem. Daardoor is er een brede toepassingsmogelijkheid, van woonhuizen tot kantoorpanden en utiliteitsbouw. In deze haalbaarheidsstudie wordt een significante slag gemaakt op de maakbaarheid en schaalbaarheid van het bestaande concept. Er wordt aandacht besteed aan de kostprijs, maakbaarheid en schaalbaarheid. Specifiek de ophanging en het mounting frame, het mechanische bewegingssysteem, inpasbaarheid, productietechnieken en materiaalkeuzes. De optische elementen en pv receiver worden gemodelleerd in Solidworks en er worden energieopbrengst- en lichtdoorlating analyses uitgevoerd op basis van Ray-tracing simulaties. Tevens wordt een alternatief optisch systeem gebaseerd op een langgerekte lineaire Fresnel lens gemodelleerd waarvan ook de energieopbrengst en lichtdoorlatendheid worden gesimuleerd. Voor beide systemen wordt een productie kostprijs opgesteld en een techno-economische haalbaarheidsanalyse verricht. Het consortium verspreidt de resultaten van dit project, en bereidt op basis van de resultaten een vervolg-subsidieaanvraag voor, zo nodig met een uitbreiding van het consortium.
Nederland streeft naar een verduurzaming van het energiesysteem. In 2020 moet 14% van onze energie duurzaam opgewekt zijn, waarbij de zon, naast wind, als belangrijkste duurzame energiebron gezien wordt. Systemen voor geconcentreerde zonne-energie kunnen worden ingezet voor het opwekken van elektrische en/of thermische energie. Grootschalige systemen (multi-MW) met spiegels worden reeds toegepast in zonnevelden. Het HAN Lectoraat Duurzame Energie werkt al enige jaren aan innovatieve systemen met lenzen waarbij naast het concentreren van direct licht het overblijvende diffuse licht beschikbaar is voor verlichting van de onderliggende ruimte. We willen de in eerdere projecten opgedane kennis en ervaring nu inzetten in een nieuw project, waarin we streven van prototype naar toepassing te komen. De bedrijven zijn benaderd over de nog openstaande vragen. Hieruit is een nieuwe onderzoeksvraag gevormd: Hoe kan voor systemen van geconcentreerde zonne-energie voor toepassingen in glastuinbouw en gebouwde omgevingen voor de productie van zowel elektriciteit als warmte, de energie-opbrengst verhoogd worden door een optimaler gebruik van de lichtinval en met een compacter en duurzamer systeem? In dit project, CONSOLE (acroniem voor CONcentrated SOLar Energy), gaan we werken aan het optimaliseren van de bestaande systemen en het ontwerpen van verbeterde (hybride) systemen voor het opwekken van warmte en elektriciteit in kassen en gebouwde omgeving. We gebruiken hiervoor zowel modellering als meten en testen en komen vanuit een inventarisatie tot een pakket van eisen wat uiteindelijk tot verbeterde prototypes leidt die geschikt zijn voor commerciële toepassing. We doen dit vanuit een nauwe samenwerking met 12 MKB’s, een branche-organisatie en een Centre of Expertise. Daarnaast is er een directe koppeling met het onderwijs, door de betrokkenheid van docent-onderzoekers en studenten in semesterprojecten, stages en afstudeerprojecten.