As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM’s vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM’s Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
Electromagnetic fields, or EMF, are ubiquitous in our daily life. Extremely low frequency magnetic fields (ELF MF) are generated by any device using electric current. Especially in workplace situations involving MRI scanners, welding equipment, induction heaters, and power plants, they are known for potentially high field strengths. These high field strengths may lead to adverse health effects if insufficient preventive measures are in place. This study investigates employees’ perceptions on work safety regarding EMF exposure. We held 15 semi-structured interviews in three different (non-nuclear) power plants in the Netherlands. We found that power plants in this study made ample use of fences and warning signs where needed, creating a safe working environment. Nevertheless, some workers perceive that there are vague regulations, organizational issues and lack of clarity on the properties of EMF. Participants also indicated that there is some room for improvement with respect to work safety meetings on EMF. Employees want to be informed about EMF and its potential health effects and mitigation methods, but their information need is limited and straightforward. A simple warning system, along with safety information on paper, may be sufficient. https://doi.org/10.1080/13669877.2020.1750459 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE