With artificial intelligence (AI) systems entering our working and leisure environments with increasing adaptation and learning capabilities, new opportunities arise for developing hybrid (human-AI) intelligence (HI) systems, comprising new ways of collaboration. However, there is not yet a structured way of specifying design solutions of collaboration for hybrid intelligence (HI) systems and there is a lack of best practices shared across application domains. We address this gap by investigating the generalization of specific design solutions into design patterns that can be shared and applied in different contexts. We present a human-centered bottom-up approach for the specification of design solutions and their abstraction into team design patterns. We apply the proposed approach for 4 concrete HI use cases and show the successful extraction of team design patterns that are generalizable, providing re-usable design components across various domains. This work advances previous research on team design patterns and designing applications of HI systems.
MULTIFILE
25-06-2023Technology in general, and assistive technology in particular, is considered to be a promising opportunity to address the challenges of an aging population. Nevertheless, in health care, technology is not as widely used as could be expected. In this chapter, an overview is given of theories and models that help to understand this phenomenon. First, the design of (assistive) technologies will be addressed and the importance of human-centered design in the development of new assistive devices will be discussed. Also theories and models are addressed about technology acceptance in general. Specific attention will be given to technology acceptance in healthcare professionals, and the implementation of technology within healthcare organizations. The chapter will be based on the state of the art of scientific literature and will be illustrated with examples from our research in daily practice considering the different perspectives of involved stakeholders.
LINK
04-11-2018The use of games as interventions in the domain of health care is of-ten paired with evaluating the effects in randomized clinical trials. The iterative design and development process of games usually also involves an evaluation phase, aimed at identifying improvements for subsequent iterations. Since game design theory and theories from associated fields provide no unified framework for designing successful interventions, interpreting evaluation results and for-mulating improvements is complicated. This case study explores an approach of monitoring design decisions and corresponding theories throughout the design and development cycle, allowing evaluation results to be attributed to design decisions. Such an approach may allow the game design and development pro-cess to iterate the game more efficiently towards use in practice.3rd European Conference on Gaming and Playful Interaction in Health Care.