In the present study, how crime scene investigators are informed before going to a crime scene was investigated. In order to gain more insight in the flow of information from emergency call to crime scene, semi-structured interviews were conducted in three different police regions with six crime scene investigators, six forensic team leaders, and six crime scene investigators.Results indicate that information that crime scene investigators receive before going to a crime scene is usually limited. Most information is provided on-site by the uniformed police officers, forensic medical examiner, and tactical investigation team. This information flow is underexposed, and there are no guidelines about how it is recorded.Even though all parties are provided with limited information, incidents are quickly labelled by emergency call responders and forensic team leaders. The influence of the framing process that occurs as a result is underestimated. Furthermore, emergency call responders and forensic team leaders have different goals in the investigative process and hardly take into account the specific needs of the crime scene investigator. In order to better meet the needs of crime scene investigators, further research about the content of the provided information, as well as at what moment it should be shared, is needed. Also, in order to determine afterward what role information may have played in the decision-making at the crime scene the recording of information should be better safeguarded.
DOCUMENT
Crime scene investigations are highly complex environments that require the CSI to engage in complex decision-making. CSIs must rely on personal experience, context information, and scientific knowledge about the fundamental principles of forensic science to both find and correctly interpret ambiguous traces and accurately reconstruct a scene. Differences in CSI decision making can arise in multiple stages of a crime scene investigation. Given its crucial role in forensic investigation, CSI decision-making must be further studied to understand how differences may arise during the stages of a crime scene investigation. The following exploratory research project is a first step at comparing how crime scene investigations of violent robberies are conducted between 25 crime scene investigators from nine countries across the world.Through a mock crime scene and semi-structured interview, we observed that CSIs have adopted a variety of investigation approaches. The results show that CSIs have different working strategies and make different decisions when it comes to the construction of relevant hypotheses, their search strategy, and the collection of traces. These different decisions may, amongst other factors, be due to the use of prior information, a CSI’s knowledge and experience, and the perceived goal of their investigation. We suggest the development of more practical guidelines to aid CSIs through a hypothetico-deductive reasoning process, where (a) CSIs are supported in the correct use of contextual information, (b) outside knowledge and expertise are integrated into this process, and (c) CSIs are guided in the evaluation of the utility of their traces.
MULTIFILE
New technologies will allow Crime Scene Investigators (CSIs) in the near future to analyse traces at the crime scene and receive identification information while still conducting the investigation. These developments could have considerable effects on the way an investigation is conducted. CSIs may start reasoning based on possible database-matches which could influence scenario formation (i.e. the construction of narratives that explain the observed traces) during very early phases of the investigation. The goal of this study is to gain more insight into the influence of the rapid identification information on the reconstruction of the crime and the evaluation of traces by addressing two questions, namely 1) is scenario formation influenced from the moment that ID information is provided and 2) do database matches influence the evaluation of traces and the reconstruction of the crime. We asked 48 CSIs from England to investigate a potential murder crime scene on a computer. Our findings show that the interpretation of the crime scene by CSIs is affected by the moment identification information is provided. This information has a higher influence on scenario formation when provided after an initial scenario has been formed. Also, CSIs seem to attach great value to traces that produce matches with databases and hence yield a name of a known person. Similar traces that did not provide matches were considered less important. We question whether this kind of selective attention is desirable as it may cause ignorance of other relevant information at the crime scene.
DOCUMENT
Highlights•Crime scene investigations are accompanied by cognitive challenges.•Introducing technologies at crime scenes requires research into the human factor.•Mobile technologies can impede the investigation without studying the impact.
DOCUMENT
Crime scenes can always be explained in multiple ways. Traces alone do not provide enough information to infer a whole series of events that has taken place; they only provide clues for these inferences. CSIs need additional information to be able to interpret observed traces. In the near future, a new source of information that could help to interpret a crime scene and testing hypotheses will become available with the advent of rapid identification techniques. A previous study with CSIs demonstrated that this information had an influence on the interpretation of the crime scene, yet it is still unknown what exact information was used for this interpretation and for the construction of their scenario. The present study builds on this study and gains more insight into (1) the exact investigative and forensic information that was used by CSIs to construct their scenario, (2) the inferences drawn from this information, and (3) the kind of evidence that was selected at the crime scene to (dis)prove this scenario. We asked 48 CSIs to investigate a potential murder crime scene on the computer and explicate what information they used to construct a scenario and to select traces for analysis. The results show that the introduction of rapid ID information at the start of an investigation contributes to the recognition of different clues at the crime scene, but also to different interpretations of identical information, depending on the kind of information available and the scenario one has in mind. Furthermore, not all relevant traces were recognized, showing that important information can be missed during the investigation. In this study, accurate crime scenarios where mainly build with forensic information, but we should be aware of the fact that crime scenes are always contaminated with unrelated traces and thus be cautious of the power of rapid ID at the crime scene.
DOCUMENT
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.
DOCUMENT
Currently, a series of promising new tools are under development that will enable crime scene investigators (CSIs) to analyze traces in situ during the crime scene investigation or enable them to detect blood and provide information on the age of blood. An experiment is conducted with thirty CSIs investigating a violent robbery at a mock crime scene to study the influence of such technologies on the perception and interpretation of traces during the first phase of the investigation. Results show that in their search for traces, CSIs are not directed by the availability of technologies, which is a reassuring finding. Qualitative findings suggest that CSIs are generally more focused on analyzing perpetrator traces than on reconstructing the event. A focus on perpetrator traces might become a risk when other crime‐related traces are overlooked, and when analyzed traces are in fact not crime‐related and in consequence lead to the identification of innocent suspects.
DOCUMENT
Technological innovations enable rapid DNA analysis implementation possibilities. Concordantly, rapid DNA devices are being used in practice. However, the effects of implementing rapid DNA technologies in the crime scene investigation procedure have only been evaluated to a limited extent. In this study a field experiment was set up comparing 47 real crime scene cases following a rapid DNA analysis procedure outside of the laboratory (decentral), with 50 cases following the regular DNA analysis procedure at the forensic laboratory. The impact on duration of the investigative process, and on the quality of the analyzed trace results (97 blood and 38 saliva traces) was measured. The results of the study show that the duration of the investigation process has been significantly reduced in cases where the decentral rapid DNA procedure was deployed, compared to cases where the regular procedure was used. Most of the delay in the regular process lies in the procedural steps during the police investigation, not in the DNA analysis, which highlights the importance of an effective work process and having sufficient capacity available. This study also shows that rapid DNA techniques are less sensitive than regular DNA analysis equipment. The device used in this study was only to a limited extent suitable for the analysis of saliva traces secured at the crime scene and can mainly be used for the analysis of visible blood traces with an expected high DNA quantity of a single donor.
DOCUMENT
Mobile Rapid DNA technology is close to being incorporated into crime scene investigations, with the potential to identify a perpetrator within hours. However, the use of these techniques entails the risk of losing the sample and potential evidence, because the device not only consumes the inserted sample, it is also is less sensitive than traditional technologies used in forensic laboratories. Scene of Crime Officers (SoCOs) therefore will face a ‘time/success rate trade-off’ issue when making a decision to apply this technology.In this study we designed and experimentally tested a Decision Support System (DSS) for the use of Rapid DNA technologies based on Rational Decision Theory (RDT). In a vignette study, where SoCOs had to decide on the use of a Rapid DNA analysis device, participating SoCOs were assigned to either the control group (making decisions under standard conditions), the Success Rate (SR) group (making decisions with additional information on DNA success rates of traces), or the DSS group (making decisions supported by introduction to RDT, including information on DNA success rates of traces).This study provides positive evidence that a systematic approach for decision-making on using Rapid DNA analysis assists SoCOs in the decision to use the rapid device. The results demonstrated that participants using a DSS made different and more transparent decisions on the use of Rapid DNA analysis when different case characteristics were explicitly considered. In the DSS group the decision to apply Rapid DNA analysis was influenced by the factors “time pressure” and “trace characteristics” like DNA success rates. In the SR group, the decisions depended solely on the trace characteristics and in the control group the decisions did not show any systematic differences on crime type or trace characteristic.Guiding complex decisions on the use of Rapid DNA analyses with a DSS could be an important step towards the use of these devices at the crime scene.
DOCUMENT
In a large body of research the influence of contextual information on decisions made in a broad range of disciplines has been studied. To date, the influence of these expectancy effects on the crime scene investigation has not been studied. In the present study we explored the effect of prior information given to crime scene investigators on their perception and interpretation of an ambiguous crime scene. Participants (N=58) were experienced crime scene investigators who were provided with a panoramic photograph of an ambiguousmock crime scene. The victimmay have committed suicide orwasmurdered. Participants either received prior information indicating suicide, prior information indicating a violent death, or they received no prior information. Participants were asked about what they thought had happened at the scene of the crime, both at the initial assessment of the scene and at the end of the investigation when they were asked to describe the most likely scenario. They were also asked which traces they wanted to secure and why. Results showed that participants interpreted the crime scene differently dependent on how it was presented to them. Both the initial assessment of the scene and the most likely scenario that was described after the investigation were influenced by the prior information the participants were provided with, even though roughly the same traces were secured by all, independent of the prior information. Results demonstrate that prior information indeed influences the interpretation of the crime scene, but since the present study was exploratory further research is needed.
DOCUMENT