Onze leef- en werkomgeving heeft invloed op onze gezondheid, maar het nauwkeurig bepalen van persoonlijke blootstelling aan verschillende milieufactoren blijft een uitdaging. Toch is dit wel van belang, omdat bijvoorbeeld de blootstelling aan fijnstof, stikstofdioxide en ozon jaarlijks al leidt tot 12.000 vroegtijdige sterfgevallen in Nederland (Gezondheidsraad, 2018). In werkomgevingen zijn er behalve voor de genoemde stoffen ook nog andere vluchtig organische stoffen en chemicalen waarvan de blootstelling op de korte of lange termijn tot negatieve gezondheidseffecten kan leiden. Ook fysische blootstellingen kunnen negatieve gezondheidseffecten hebben, zoals geluid, UV-straling, elektromagnetische velden en trillingen.
This research examines the impact of transitioning to an autonomous operation on the airside of Schiphol airport, with a specific focus on emissions that affect both the environment and the staff working within airport premises. This study will explore current emissions from vehicles on Schiphol's airside, assessing their environmental impact and identifying harmful emissions. It will evaluate potential solutions, notably the role of electric vehicles, comparing this to the status quo before mapping the transition to an autonomous airside and its environmental consequences. A significant focus will be on the implications for staff working in these conditions. Additionally, it will review relevant laws and regulations to propose improvements, aiming to enhance Schiphol's environmental footprint. Conducted by Bright Sky for Schiphol Airport, this research aims to address overlooked harmful substances at the airport, seeking prompt solutions. Utilized by Schiphol, the findings will shed light on the necessity for innovation towards electric and autonomous vehicles, underlining the urgency for environmental improvements and technological advancements to tackle pollution issues effectively.
MULTIFILE
Duurzaam beheerde landbouwbodems bevorderen de bodemvruchtbaarheid, zijn beter bestand tegen de klimaatveranderingen, zorgen voor schoner oppervlakte- en grondwater, een hogere biodiversiteit en het vastleggen van koolstof. Er is grote behoefte aan onderbouwde handelingsperspectieven voor koolstofvastlegging zonder nadelige effecten op nitraatuitspoeling door verhoogde mineralisatie, maar vooralsnog ontbreekt het aan praktische meet- en monitoringsmethoden van organische stof en stikstof in de bodem. Recent onderzoek laat zien dat er mogelijk een nieuwe indicator is voor koolstofvastlegging: Mineral Associated Organic Matter (MAOM) in relatie tot Particulate Organic Matter (POM). Het microbiële bodemleven is de belangrijkste regulator van de koolstofcyclus in de bodem en de omzetting van organische stof in POM en MAOM. Bij de microbiële afbraak van organisch materiaal, zoals gewasresten (blad en wortels), wortelexudaten, organische mest of compost, worden grote koolstofverbindingen enzymatisch afgebroken tot kleine koolstofverbindingen, die dienen als voedsel voor het bodemleven. Deze kleine koolstofverbindingen en de resten van afgestorven micro-organismen kunnen gemakkelijk worden gebonden en ingekapseld door kleideeltjes (MAOM). Daarmee zijn ze fysisch afgeschermd voor verdere afbraak en dus stabiel. De vorming van MAOM worden sterk gestuurd door de samenstelling van zowel het aangevoerde organische materiaal als van het bodemleven. In de praktijk betekent dit dat de keuzes die een agrariër maakt in het bouwplan (gewaskeuze) en bodembeheer (o.a. organische stofaanvoer en grondbewerking) grote invloed hebben op de vorming van MAOM en daarmee op de koolstofvastlegging. Dit project richt zich op metingen aan POM en MAOM in praktijksituaties en langlopende systeemproeven, het berekenen van de koolstof- en stikstofdynamiek en een DNA-analyse van het bodemmicrobioom. In combinatie met een knelpuntenanalyse in praktijksituaties kan dit inzicht geven in het handelingsperspectief voor agrariërs om duurzaam bodem- en waterbeheer te combineren met koolstofvastlegging op minerale grondsoorten.
The ongoing debate over the use of fossil fuels, particularly diesel, in engines due to concerns about global climate change has prompted the exploration of alternative propulsion methods and fuels. Despite various proposed alternatives, diesel engines continue to play a vital role in the global market [1]. This discussion has spurred innovations aimed at enhancing the performance and sustainability of diesel engines, including the utilization of biodiesel mixtures, synthetic fuels, and water-in-diesel emulsions (W/D emulsions) [2-5]. Scientific evidence indicates that the presence of water in water-diesel emulsions can improve engine performance and reduce emissions, such as particulate matter and NOx [6,7]. This performance enhancement is attributed to the phenomenon of micro-explosion, or secondary atomization, caused by the differing boiling points of water and diesel [8]. The rapid temperature increase during fuel injection leads to the explosive vaporization of dispersed water droplets, breaking up the diesel emulsion into smaller droplets and resulting in a shorter combustion time. Various processes, including membrane emulsification, ultrasound emulsification, and high shear stirring, are employed to create these emulsions, often necessitating the use of surfactants for stability [9]. This research proposes a two-fold approach: firstly, the use of Electrohydrodynamic Atomization (EHDA, or electrospray) to create stable water-diesel emulsions. Secondly, the employment of magnetic fields in treating both diesel and water-diesel emulsions. EHDA is already used in several applications, such as drug encapsulation, bioencapsulation, thin film coatings and is also known for its ability to form stable emulsions. [10-13]. For the second approach, it has been shown that nanobubbles can be formed [17] and stabilized due to the electric charging action of magnetic fields [18]. We hypothesize that the charged bubbles can further stabilize the diesel-water emulsion and also enhance the explosive evaporation due to the additional Coulomb forces in play.