The temporal dimension of acceptance is under-researched in technology acceptance research. Yet, people’s perceptions on technology use may change over time when gaining user experiences. Our 6-month home study deploying an interactive robot provides insight into the long-term use of use interactive technology in a domestic environment. We present a phased framework for the acceptance of interactive technology in domestic environments. Based on 97 interviews obtained from 21 participants living in different household types, the results provide an initial validation of our phased framework for long-term acceptance showing that acceptance phases are linked to certain user experiences which evolve over time when people gain experience with the technology. Involving end users in the early stages of development helps researchers understand the cultural and social contexts of acceptance and enables developers to apply this gained knowledge into their future designs.
DOCUMENT
Introduction: Sensor-feedback systems can be used to support people after stroke during independent practice of gait. The main aim of the study was to describe the user-centred approach to (re)design the user interface of the sensor feedback system “Stappy” for people after stroke, and share the deliverables and key observations from this process. Methods: The user-centred approach was structured around four phases (the discovery, definition, development and delivery phase) which were fundamental to the design process. Fifteen participants with cognitive and/or physical limitations participated (10 women, 2/3 older than 65). Prototypes were evaluated in multiple test rounds, consisting of 2–7 individual test sessions. Results: Seven deliverables were created: a list of design requirements, a personae, a user flow, a low-, medium- and high-fidelity prototype and the character “Stappy”. The first six deliverables were necessary tools to design the user interface, whereas the character was a solution resulting from this design process. Key observations related to “readability and contrast of visual information”, “understanding and remembering information”, “physical limitations” were confirmed by and “empathy” was additionally derived from the design process. Conclusions: The study offers a structured methodology resulting in deliverables and key observations, which can be used to (re)design meaningful user interfaces for people after stroke. Additionally, the study provides a technique that may promote “empathy” through the creation of the character Stappy. The description may provide guidance for health care professionals, researchers or designers in future user interface design projects in which existing products are redesigned for people after stroke.
DOCUMENT
This article delves into the acceptance of autonomous driving within society and its implications for the automotive insurance sector. The research encompasses two different studies conducted with meticulous analysis. The first study involves over 600 participants involved with the automotive industry who have not yet had the opportunity to experience autonomous driving technology. It primarily centers on the adaptation of insurance products to align with the imminent implementation of this technology. The second study is directed at individuals who have had the opportunity to test an autonomous driving platform first-hand. Specifically, it examines users’ experiences after conducting test drives on public roads using an autonomous research platform jointly developed by MAPFRE, Universidad Carlos III de Madrid, and Universidad Politécnica de Madrid. The study conducted demonstrates that the user acceptance of autonomous driving technology significantly increases after firsthand experience with a real autonomous car. This finding underscores the importance of bringing autonomous driving technology closer to end-users in order to improve societal perception. Furthermore, the results provide valuable insights for industry stakeholders seeking to navigate the market as autonomous driving technology slowly becomes an integral part of commercial vehicles. The findings reveal that a substantial majority (96% of the surveyed individuals) believe that autonomous vehicles will still require insurance. Additionally, 90% of respondents express the opinion that policies for autonomous vehicles should be as affordable or even cheaper than those for traditional vehicles. This suggests that people may not be fully aware of the significant costs associated with the systems enabling autonomous driving when considering their insurance needs, which puts the spotlight back on the importance of bringing this technology closer to the general public.
DOCUMENT
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.
Youth care is under increasing pressure, with rising demand, longer waiting lists, and growing staff shortages. In the Netherlands, one in seven children and adolescents is currently receiving youth care. At the same time, professionals face high workloads, burnout risks, and significant administrative burdens. This combination threatens both the accessibility and quality of care, leading to escalating problems for young people and families. Artificial intelligence (AI) offers promising opportunities to relieve these pressures by supporting professionals in their daily work. However, many AI initiatives in youth care fail to move beyond pilot stages, due to barriers such as lack of user acceptance, ethical concerns, limited professional ownership, and insufficient integration into daily practice. Empirical research on how AI can be responsibly and sustainably embedded in youth care is still scarce. This PD project aims to develop practice-based insights and strategies that strengthen the acceptance and long-term adoption of AI in youth care, in ways that support professional practice and contribute to appropriate care. The focus lies not on the technology itself, but on how professionals can work with AI within complex, high-pressure contexts. The research follows a cyclical, participatory approach, combining three complementary implementation frameworks: the Implementation Guide (Kaptein), the CFIR model (Damschroder), and the NASSS-CAT framework (Greenhalgh). Three case studies serve as core learning environments: (1) a speech-to-text AI tool to support clinical documentation, (2) Microsoft Copilot 365 for organization-wide adoption in support teams, and (3) an AI chatbot for parents in high-conflict divorces. Throughout the project, professionals, clients, ethical experts, and organizational stakeholders collaborate to explore the practical, ethical, and organizational conditions under which AI can responsibly strengthen youth care services.
Craft your own audience: How can a technology-driven company use online gaming communities, like Minecraft, to reach and engage a young audience? This project creates a context in which reality is simulated, by having students work together for a real client in an international context. In this project we explore innovative ways in which Samsung can engage younger audiences through Minecraft, the world's best-selling game with almost 140 million monthly players (2023). This project is focused on on educating, researching and developing playable prototypes within Minecraft that demonstrate how online gaming communities can be used to connect technology companies with a new generation of users. Societal issueInclusion of different ages around technology literacy and education (21st century skills).Benefit to societyGlobal inclusive community around education and R&D, higher cultural awareness.Collaborative partnersManchester Metropolitan University; Samsung Benelux.