Plant photosynthesis and biomass production are associated with the amount of intercepted light, especially the light distribution inside the canopy. Three virtual canopies (n = 80, 3.25 plants/m2) were constructed based on average leaf size of the digitized plant structures: ‘small leaf’ (98.1 cm2), ‘medium leaf’ (163.0 cm2) and ‘big leaf’ (241.6 cm2). The ratios of diffuse light were set in three gradients (27.8%, 48.7%, 89.6%). The simulations of light interception were conducted under different ratios of diffuse light, before and after the normalization of incident radiation. With 226.1% more diffuse light, the result of light interception could increase by 34.4%. However, the 56.8% of reduced radiation caused by the increased proportion of diffuse light inhibited the advantage of diffuse light in terms of a 26.8% reduction in light interception. The big-leaf canopy had more mutual shading effects, but its larger leaf area intercepted 56.2% more light than the small-leaf canopy under the same light conditions. The small-leaf canopy showed higher efficiency in light penetration and higher light interception per unit of leaf area. The study implied the 3D structural model, an effective tool for quantitative analysis of the interaction between light and plant canopy structure.
MULTIFILE
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.
MULTIFILE
Background: In clinical practice, nurses’ attitudes regarding older patients are important in relation to quality of care. The Older People in Acute Care Survey (OPACS) is an instrument measuring hospital nurses attitudes regarding older patients and is validated in Australia and the USA. The OPACS is translated in Dutch language and content validity of this translation is previously assessed, presenting questionable results. Measurement instruments, however, cannot be “validated” based on content validity evidence alone. Judgmental evidence and statistical analysis should be combined to fully evaluate content domain definition and representation and guide further development. Objective: Assess structural validity and reliability to fully evaluate the OPACS for use in the Netherlands, complementing previous conducted content validity results. Design: Cross-sectional. Setting: Three general hospitals in the Netherlands. Participants: 201 registered nurses. Methods: Confirmatory factor analysis was used to assess the structural validity. Reliability was assessed with Cronbach’s alpha. Results: OPACS Section A (measuring practice experiences) demonstrated to have acceptable structural validity- and good reliability outcomes after exclusion of two items (model fit: x² [df=537]=8475.40, p <0.001, CFI=0.96, TLI=0.96, RMSEA=0.21; Cronbach’s alpha=0.82). Section B (measuring general opinion) demonstrated to have inadequate structural validity outcomes (model fit: x² [df=1127]=9200.29, p<0.001, CFI=0.68, TLI=0.67, RMSEA=0.15). None of the items contributed significant to the factor and therefore no further analysis could be performed (range p(>|z|)= 0.551 -0 .788). Conclusion: Even though structural validity for section A was acceptable, content validity scores of a majority of items in this subscale were low, resulting in questionable use of this subscale for the Dutch context. The findings of this study, in relation to the earlier findings regarding content validity, justify the conclusion that use of the Dutch OPACS in clinical practice and research is not recommended. Given these findings, future research should pursue the development or (cross-cultural) validation of other instruments measuring hospital nurses attitudes towards older patients for the Dutch cultural context. Furthermore, this study demonstrated the influence of cultural differences on measurement instruments and the need for rigorous research before using a measurement instrument in a new culture or context.
DOCUMENT
The additive manufacturing (AM) of high-quality products requires knowledge of the 3D-printing process and the related design guidelines. Allthough AM has been around for some years, many engineers still lack this knowledge. Therefore, Fontys University of Applied Sciences sets great store by training of engineers, education of engineering students and knowledge sharing on this topic. As an appetiser, this article offers a beginner’s course.
DOCUMENT
Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation between epochs can be handled. The determination of transformation parameters between two or more coordinate sets, determined by geodetic monitoring measurements, can be handled as a least squares adjustment problem. It can be solved without linearisation of the functional model, if it concerns an affine, similarity or congruence transformation in one-, two- or three-dimensional space. If the functional model describes more than such a transformation, it is hardly ever possible to find a direct solution for the transformation parameters. Linearisation of the functional model and applying least squares formulas is then an appropriate mode of working. The adjustment model is given as a model of observation equations with constraints on the parameters. The starting point is the affine transformation, whose parameters are constrained to get the parameters of the similarity or congruence transformation. In this way the use of Euler angles is avoided. Because the model is linearised, iteration is necessary to get the final solution. In each iteration step approximate coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get approximate coordinates. For the similarity and congruence transformation the approximate coordinates have to comply to constraints. To achieve this, use is made of the singular value decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment model total station measurements in two epochs of monitored buildings are analysed. Coordinate sets with full, rank deficient covariance matrices are determined from the measurements and adjusted with the proposed model. Testing the adjustment for deformations results in detection of the simulated deformations."
MULTIFILE
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors that influence reconstruction accuracy, the lighting conditions at capture time remain one of the most influential, yet widely neglected, variables. This review provides a comprehensive survey of classical and modern 3D reconstruction techniques, including Structure from Motion (SfM), Multi-View Stereo (MVS), Photometric Stereo, and recent neural rendering approaches such as Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS), while critically evaluating their performance under varying illumination conditions. We describe how lighting-induced artifacts such as shadows, reflections, and exposure imbalances compromise the reconstruction quality and how different approaches attempt to mitigate these effects. Furthermore, we uncover fundamental gaps in current research, including the lack of standardized lighting-aware benchmarks and the limited robustness of state-of-the-art algorithms in uncontrolled environments. By synthesizing knowledge across fields, this review aims to gain a deeper understanding of the interplay between lighting and reconstruction and provides research directions for the future that emphasize the need for adaptive, lighting-robust solutions in 3D vision systems.
MULTIFILE
The catalytic oxidation of potato starch by [MnIV2 (μ-O)3(tmtacn)2][H2O](CH3COO)2 (Mncat, with tmtacn =1,4,7-trimethyl-1,4,7-triazacyclononane) with H2O2, was recently introduced as a promising alternative to ubiquitous sodium hypochlorite (NaOCl). Here, we report an in-depth investigation into interactions of the catalyst with the starch granule. Pitted starches obtained by pre-treatment with high-frequency ultrasound (HFUS) were shown to result in a uniquely homogeneous oxidation. To study this further, fractionation of oxidised potato starch was done which showed a preference for the oxidation of smaller granules with a higher relative surface area. This result was corroborated by chemical surface gelatinisation of fractionated granules. These studies showed that the inside of the granules was oxidised, but that Mncat had a moderate preference for oxidation of the periphery. Together, these results allow for a better understanding of oxidation of starch by Mncat and how it differs from NaOCl oxidation making further optimisation of the process possible.
DOCUMENT
In urban planning, 3D modeling and virtual reality (VR) provide new means for involving citizens in the planning process. For municipal government, it is essential to know how effective these means are, to justify investments. In this study, we present a case of using VR in a municipal process of civic participation concerning the redesign of a public park. The process included codesign activities and involved citizens in decision-making through a ballot, using 3D-rendered versions of competing designs. In codesign, 3D-modeling tools were instrumental in empowering citizens to negotiate design decisions, to discuss the quality of designs with experts, and to collectively take decisions. This paper demonstrates that, in a ballot on competing designs with 1302 citizens, VR headsets proved to be equally effective compared to other display technologies in informing citizens during decision making. The results of an additional, controlled experiment indicate that VR headsets provide higher engagement and more vivid memories than viewing the designs on non-immersive displays. By integrating research into a municipal process, we contribute evidence of cognitive and engagement effects of using 3D modeling and immersive VR technologies to empower citizens in participatory urban planning. The case described in the paper concerns a public park; a similar approach could be applied to the design of public installations including media architecture.
DOCUMENT
Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT