As the fourth industrial revolution unfolds and the use of digital humans becomes more commonplace, understanding digital humans' potential to replace real human interaction or enhance it, particularly in storytelling marketing contexts, is becoming evermore important. To promote interaction and increase the entertainment value of technology-enhanced storytelling marketing, brands have begun to explore the use of augmented digital humans as storytelling agents. In this article, we examine the effectiveness of leveraging advanced technologies and delivering messages via digital humans in storytelling advertisements. In Study 1, we investigate the effectiveness of narrative transportation on behavioral responses after exposure to an interactive augmented reality mobile advertisement with a digital human storyteller. In Study 2, we compare how consumers respond to augmented digital human versus real human storytelling advertisements after conducting an exploratory neurophysiological electroencephalography study. The findings show that both types of agents promote narrative transportation when the story fits the product well. Moreover, a digital human perceived as more human-like elicits stronger positive consumer responses, suggesting an effective new approach to storytelling marketing.
DOCUMENT
We are well into the 21st century now and the urgency for lifelong learning is growing especially regarding numeracy. There are major societal and policy pressures on education to prepare citizens for a complex and technologized society, in literature referred to as “21st century skills” (Voogt & ParejaRoblin, 2012), “global competences” (OECD, 2016a) or “the 4th industrial revolution” (Schwab, 2016). International research has demonstrated the economic and social value of literacy and numeracy knowledge and skills (Hanushek and Wöbmann, 2012; Grotlüschen, et al. 2016). With respect to numeracy (and/or mathematics) education, we explore the implications of these pressures to the mathematical demands at individuals living and working in modern life, and what is expected from numeracy education as society moves further into the 21st century. New means of communication and types of services have changed the way individuals interact with governments, institutions, services and each other, and social and economic transformations have in turn, changed the nature of the demand for skills as well.
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
Technology, data use, and digitisation are based on mathematical structures, and this permeates many aspects of our daily lives: apps, online activities, and all kinds of communication. Equipping people to deal with this mathematisation of society is a big challenge. Which competences are needed, which skills must be mastered? Which dispositions are helpful? These are the questions that matter in the development of adult education. The concept of numeracy is mentioned already for many years as a possible useful approach to equip adults with the necessary skills. In this paper we will argue that is only true when numeracy is defined as a multifaceted concept which combines knowledges, skills, higher order skills, context and dispositions.
DOCUMENT
This paper is a discussion paper to support an Erasmus+ project with the name Common European Numeracy Framework (CENF) (for adults) which will start at the end of the year 2018. In the first months of 2019 the team with participants from The Netherlands, Austria, Spain and Ireland will be in the process of collecting European examples of numeracy practices and current numeracy frameworks. At the conference we will show the results of this collection to date and the initial outline of a tentative CENF. We intend to spark comments, suggestions and insights from the participants of TWG07 - Adults Mathematics Education - to enrich the collection and as feedback on the initial outline of the CENF. Another aim is to create a network of national or regional stakeholders which will support the development of a shared framework for numeracy goals and numeracy education for adults in the 21st century.
LINK
There is growing realisation amongst local communities that the organizations and societies within which they live and work need to become more sustainable in order to secure their social, environmental and economic futures (Coyle 2011, Müller et al. 2011). The underlying motivations vary but are often traceable to an increased need for certainty or security. The search for solutions is in part practically orientated towards resilience to different forces of decline. Whilst sometimes manifested in individuals it is more often evident within local initiatives seeking common ground and related to perceived needs for local independence or increased self-determination (Musall & Kuik 2011, Seyfang & Haxeltine 2012). In our project and in this paper, our focus is on local initiatives as opposed to developments at regional or strategic scales. In the Northern Netherlands such local initiatives are often comprised of village residents or more heterogeneous groups from the wider rural community, with local initiatives co-existent in urban areas and cities. Local initiatives may focus on different sustainability issues (or a combination of them), such as transportation, energy, water, natural environment, food production, solid waste or the local economy (Coyle, 2011). However, many of these local initiatives focus on energy issues and solutions, while they might expand their interests to other issues after a prolonged existence. Therefore, in this paper we refer to these local or communal activities as Local Energy Initiatives (LEI’s) that are at the grassroots of sustainable transitions.
DOCUMENT
Dit boek Complexiteit en gebiedsontwikkeling vertelt het verhaal over hoe docenten en studenten in het onderwijs en het onderzoek van Hogeschool Van Hall Larenstein omgaan met complexiteit en gebiedsontwikkeling. Het is bedoeld voor iedereen die bij complexe projecten betrokken is, maar vooral voor huidige en toekomstige studenten van de hogeschool die zullen worden opgeleid voor de omgang met complexe projecten.
DOCUMENT
The use of Augmented Reality (AR) in industry is growing rapidly, driven by benefits such as efficiency gains and ability to overcome physical boundaries. Existing studies stress the need to take stakeholder values into account in the design process. In this study the impact of AR on stakeholders' values is investigated by conducting focus groups and interviews, using value sensitive design as a framework. Significant impacts were found on the values of safety, accuracy, privacy, helpfulness and autonomy. Twenty practical design choices to mitigate potential negative impact emerged from the study.
MULTIFILE
MULTIFILE
Elke periode kent zijn eigen revolutie en elke revolutie brengt zijn eigen organisatorische model met zich mee. We bevinden ons nu in de 4e industri¨ele revolutie, waar het internet van dingen ons verbindt met autonome embedded systemen. Deze systemen zijn actief in de virtuele ’cyber’ wereld, alsook in de echte ’fysieke’ wereld om ons heen. Deze zogenoemde ’Cyber-Fysieke’ Systemen volgen daarmee een modern organisatorisch model, namelijk zelfmanagement, en zijn dan ook in staat zelf proactieve acties te ondernemen. Dit proefschrift belicht productiesystemen vanuit het Cyber-Fysieke perspectief. De productiesystemen zijn hier herconfigureerbaar, autonoom en zeer flexibel. Dit kan enkel worden bereikt door het ontwikkelen van nieuwe methodes en het toepassen van nieuwe technologie¨en die flexibiliteit verder bevorderen. Echter, effici¨entie is ook van belang, bijvoorbeeld door productassemblage zo flexibel te maken dat het daardoor kosteneffici¨ent is om de productie van diverse producten met een lage oplage, zogenaamde high-mix, low volume producten, te automatiseren. De mogelijkheid om zo flexibel te kunnen produceren moet bereikt worden door de creatie van nieuwe methoden en middelen, waarbij nieuwe technologie¨en worden gecombineerd; een belangrijk aspect hierbij is dat dit toepasbaar getest moet worden door gebruik van simulatoren en speciaal hiervoor ontwikkelde productiesystemen. Dit onderzoek zal beginnen met het introduceren van het concept achter de bijbehorende productiemethodologie, welke Grid Manufacturing is genoemd. Grid Manufacturing wordt uitgevoerd door autonome entiteiten (agenten) die zowel de productiesystemen zelf, als de producten representeren. Producten leven dan al in de virtuele cyber wereld voordat zij daadwerkelijk zijn gebouwd, en zijn zich bewust uit welke onderdelen zij gemaakt moeten worden. De producten communiceren en overleggen met de autonome herconfigureerbare productiesystemen, de zogenaamde equiplets. Deze equiplets leveren generieke diensten aan een grote diversiteit aan producten, die hierdoor op elk moment geproduceerd kunnen worden. Het onderzoek focust hierbij specifiek op de equiplets en de technische uitdagingen om dynamisch geautomatiseerde productie mogelijk te maken. Om Grid Manufacturing mogelijk te maken is er een set van technologische uitdagingen onderzocht. De achtergrond, onderzoeksaanpak en concepten zijn dan ook de eerste drie inleidende hoofdstukken. Daarna begint het onderzoek met Hoofdstuk 4 Object Awareness. Dit hoofdstuk beschrijft een dynamische manier waarop informatie uit verschillende autonome systemen gecombineerd wordt om objecten te herkennen, lokaliseren en daarmee te kunnen manipuleren. Hoofdstuk 5 Herconfiguratie beschrijft hoe producten communiceren met de equiplets en welke achterliggende systemen ervoor zorgen dat, ondanks | Dutch Summary 232 dat het product niet bekend is met de hardware van de equiplet, deze toch in staat is acties uit te voeren. Tevens beschrijft het hoofdstuk hoe de equiplets omgaan met verschillende hardwareconfiguraties en ondanks de aanpassingen zichzelf toch kunnen besturen. De equiplet kan dan ook aangepast worden zonder dat deze opnieuw geprogrammeerd hoeft te worden. In Hoofdstuk 6 Architectuur wordt vervolgens dieper ingegaan op de bovenliggende architectuur van de equiplets. Hier worden prestaties gecombineerd met flexibiliteit, waarvoor een hybride architectuur is ontwikkeld die het grid van equiplets controleert door het gebruik van twee platformen: Multi-Agent System (MAS) en Robot Operating System (ROS). Nadat de architectuur is vastgesteld, wordt er in Hoofdstuk 7 onderzocht hoe deze veilig ingezet kan worden. Hierbij wordt een controlesysteem ingevoerd dat het systeemgedrag bepaalt, waarmee het gedrag van de equiplets transparant wordt gemaakt. Tevens zal een simulatie met input van de sensoren uit de fysieke wereld ’live’ controleren of alle bewegingen veilig uitgevoerd kunnen worden. Nadat de basisfunctionaliteit van het Grid nu compleet is, wordt in Hoofdstuk 8 Validatie en Utilisatie gekeken naar hoe Grid Manufacturing gebruikt kan worden en welke nieuwe mogelijkheden deze kan opleveren. Zo wordt er besproken hoe zowel een hi¨erarchische als een heterarchische aanpak, waar alle systemen gelijk zijn, gebruikt kan worden. Daarnaast laat het hoofdstuk o.a. aan de hand van enkele voorbeelden en simulaties zien welke effecten herconfiguratie kan hebben, en welke voordelen deze aanpak zoal kan bieden.. Het proefschrift laat zien hoe met technische middelen geautomatiseerde flexibiliteit mogelijk wordt gemaakt. Hoewel het gehele concept nog volwassen zal moeten worden, worden er enkele aspecten getoond die op de korte termijn toepasbaar zijn in de industrie. Enkele voorbeelden hiervan zijn: (1) het combineren van gegevens uit diverse (autonome) bronnen voor 6D-lokalisatie; (2) een data-gedreven systeem, de zogeheten hardware-abstractielaag, die herconfigureerbare systemen controleert en de mogelijkheid biedt om deze productiesystemen aan te passen zonder deze te hoeven herprogrammeren; en (3) het gebruik van Cyber-Fysieke systemen om de veiligheid te verhogen.
MULTIFILE