Athletes who wish to resume high-level activities after an injury to the anterior cruciate ligament (ACL) are often advised to undergo surgical reconstruction. Nevertheless, ACL reconstruction (ACLR) does not equate to normal function of the knee or reduced risk of subsequent injuries. In fact, recent evidence has shown that only around half of post-ACLR patients can expect to return to competitive level of sports. A rising concern is the high rate of second ACL injuries, particularly in young athletes, with up to 20% of those returning to sport in the first year from surgery experiencing a second ACL rupture. Aside from the increased risk of second injury, patients after ACLR have an increased risk of developing early onset of osteoarthritis. Given the recent findings, it is imperative that rehabilitation after ACLR is scrutinized so the second injury preventative strategies can be optimized. Unfortunately, current ACLR rehabilitation programs may not be optimally effective in addressing deficits related to the initial injury and the subsequent surgical intervention. Motor learning to (re-)acquire motor skills and neuroplastic capacities are not sufficiently incorporated during traditional rehabilitation, attesting to the high re-injury rates. The purpose of this article is to present novel clinically integrated motor learning principles to support neuroplasticity that can improve patient functional performance and reduce the risk of second ACL injury. The following key concepts to enhance rehabilitation and prepare the patient for re-integration to sports after an ACL injury that is as safe as possible are presented: (1) external focus of attention, (2) implicit learning, (3) differential learning, (4) self-controlled learning and contextual interference. The novel motor learning principles presented in this manuscript may optimize future rehabilitation programs to reduce second ACL injury risk and early development of osteoarthritis by targeting changes in neural networks.
LINK
Context:Up to 90% of pediatric athletes return to sport (RTS) after anterior cruciate ligament reconstruction (ACL-R); however, <50% RTS at the same level and second ACL injury rates are up to 32%.Objectives:(1) Determine which physical and patient-reported outcome measures guide clinical decision-making on RTS in pediatric athletes after ACL-R and (2) present a framework with insights from cognitive and neurophysiological domains to enhance rehabilitation outcomes.Data Sources:PubMed, CINAHL, Embrase, and Cochrane library databases and gray literature.Study Selection:Data on pediatric (<18 years) ACL-R patients, RTS, tests, and decision-making were reported in 1214 studies. Two authors independently reviewed titles and abstract, excluding 962 studies. Gray literature and cross-reference checking resulted in 7 extra studies for full-text screening of 259 studies. Final data extraction was from 63 eligible studies.Study Design:Scoping review.Level of Evidence:Level 4.Data Extraction:Details on study population, aims, methodology, intervention, outcome measures, and important results were collected in a data chart.Results:Studies included 4456 patients (mean age, 14 years). Quadriceps and hamstring strength (n = 25), knee ligament arthrometer (n = 24), and hop tests (n = 22) were the most-reported physical outcome measures guiding RTS in <30% of studies with cutoff scores of limb symmetry index (LSI) ≥85% or arthrometer difference <3 mm. There were 19 different patient-reported outcome measures, most often reporting the International Knee Documentation Committee (IKDC) (n = 24), Lysholm (n = 23), and Tegner (n = 15) scales. Only for the IKDC was a cutoff value of 85% reported.Conclusion:RTS clearance in pediatric ACL-R patients is not based on clear criteria. If RTS tests were performed, outcomes did not influence time of RTS. Postoperative LSI thresholds likely overestimate knee function since biomechanics are impaired despite achieving RTS criteria. RTS should be considered a continuum, and biomechanical parameters and contextual rehab should be pursued with attention to the individual, task, and environment. There is a need for psychological monitoring of the ACL-R pediatric population.
DOCUMENT
The seventh ACL Research Retreat was held March 19–21, 2015, in Greensboro, North Carolina. The retreat brought together clinicians and researchers to present and discuss the most recent advances in anterior cruciate ligament (ACL) injury epidemiology, risk factor identification, and injury risk screening and prevention strategies. Subsequently, our goal was to identify important unknowns and future research directions. The ACL Research Retreat VII was attended by 64 clinicians and researchers from Australia, Canada, India, Ireland, the Netherlands, South Africa, the United States, and the United Kingdom. The meeting featured 3 keynote and 29 podium presentations highlighting recent research. Keynotes were delivered by Bruce Beynnon, PhD (Univer- sity of Vermont), Charles ‘‘Buz’’ Swanik, PhD, ATC (University of Delaware), and Mark Paterno, PhD, PT, ATC, SCS (Cincinnati Children’s Hospital Medical Cen- ter), addressing their ongoing work related to sex-specific multivariate risk factor models for ACL injury,1 the role of the brain in noncontact ACL injury,2 and the incidence and predictors of a second ACL injury after primary ACL reconstruction and return to sport,3 respectively. Podium and poster presentations were organized into thematic sessions of prospective and case-control risk factor studies, anatomical and hormonal risk factors, neuromuscular and biomechanical risk factors, injury risk assessment after ACL injury, and injury-prevention strategies. Time was provided for group discussion throughout the conference. At the end of the meeting, attendees participated in 1 of 3 breakout sessions on the topics of genetic, hormonal, and anatomical risk factors; neuromechanical contributions to ACL injury; and risk factor screening and prevention. From these discussions, we updated the 2012 consensus state- ment4 to reflect the most recent advances in the field and to revise the important unknowns and future directions necessary to enhance our understanding of ACL injury. Following are the updated consensus statement, keynote presentation summaries, and free communication abstracts organized by topic and presentation order.
DOCUMENT
In dit project verricht het lectoraat Familiebedrijven van Hogeschool Windesheim samen met de Hogeschool Utrecht, Hogeschool van Amsterdam, CUMELA, de Jong & Laan en MKB familiebedrijven praktijkgericht onderzoek naar financiering en besluitvorming bij MKB familiebedrijven. Nu banken vanwege de economische crisis terughoudender zijn geworden in kredietverlening en hun financieringseisen hebben verzwaard, zijn meer bedrijven aangewezen op eigen middelen en familiekapitaal. Vormen van zelf-financiering worden steeds belangrijker om groei en continuïteit van MKB familiebedrijven te waarborgen. Met name bij de overdracht van kapitaalintensieve MKB familiebedrijven worden complexe financieringsconstructies bedacht om de overname mogelijk te maken. Vaak wordt hierbij onvoldoende nagedacht over het onderscheid tussen de verschillende rollen die familieleden kunnen hebben als ze met hun vermogen in het bedrijf zitten (eigenaar of andere vermogensverschaffer, familielid, directielid, werknemer). Hierdoor kan onduidelijkheid ontstaan over onderwerpen zoals besluitvorming, rendement op vermogen, zeggenschap en beloningsstructuren, waardoor op termijn conflicten kunnen ontstaan. Daarnaast kan de besturing van ondernemingen door de verschillende belangen van vermogensverschaffers in negatieve zin worden beïnvloed en kan dit (op termijn) de continuïteit, wendbaarheid en groei van ondernemingen in gevaar brengen. Zowel in de praktijk als in het onderzoek ontbreekt het aan kennis over hoe met deze problematiek kan worden omgegaan. Dit project heeft daarom tot doel om samen met de projectpartners nieuwe kennis te ontwikkelen rond zelf-financiering en besluitvorming in MKB familiebedrijven. Door middel van ontwerpgericht praktijkonderzoek wordt bestaande en nieuwe kennis over de rol van zelf-financiering en de positie van eigenaren omgezet in oplossingsrichtingen ter verbetering van de besluitvorming in MKB familiebedrijven. Door het monitoren van de uitgevoerde interventies zal worden vastgesteld of de oplossingsrichtingen in de praktijk werken. De kennis die uit dit project voortkomt beoogt daarmee het handelingsvermogen van eigenaren en directieleden te vergroten en zelf-financiering als mogelijke financieringsbron effectiever te maken.
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
The utilization of drones in various industries, such as agriculture, infrastructure inspection, and surveillance, has significantly increased in recent years. However, navigating low-altitude environments poses a challenge due to potential collisions with “unseen” obstacles like power lines and poles, leading to safety concerns and equipment damage. Traditional obstacle avoidance systems often struggle with detecting thin and transparent obstacles, making them ill-suited for scenarios involving power lines, which are essential yet difficult to perceive visually. Together with partners that are active in logistics and safety and security domains, this project proposal aims at conducting feasibility study on advanced obstacle detection and avoidance system for low-flying drones. To that end, the main research question is, “How can AI-enabled, robust and module invisible obstacle avoidance technology can be developed for low-flying drones? During this feasibility study, cutting-edge sensor technologies, such as LiDAR, radar, camera and advanced machine learning algorithms will be investigated to what extent they can be used be to accurately detect “Not easily seen” obstacles in real-time. The successful conclusion of this project will lead to a bigger project that aims to contribute to the advancement of drone safety and operational capabilities in low-altitude environments, opening new possibilities for applications in industries where low-flying drones and obstacle avoidance are critical.