The central thesis of this book is that access to information represents a vital aspect of contemporary society, encompassing participation, accountability, governance, transparency, the production of products, and the delivery of services. This view is widely shared, with commentators and scholars agreeing that access to information is a key factor in maintaining societal and economic stability. However, having access to information does not guarantee its accessibility. Assuming that information is (cognitively) interpretable is incorrect, as many practical examples illustrate. In the first chapter, this book offers insights into the challenge of access to information in a digitalized world. The concepts of access and accessibility are addressed, elucidating their meanings and delineating the ways in which they are influenced by the exponential growth of information. It examines how information technology introduces a novel access paradox. The second chapter examines the challenges to access to and accessibility of information in a digitalized, hybrid world where code may be law, where there is an inescapable loss of privacy, where doing business opens and restricts access, where literacy is a necessity to survive ‘digital divides,’ and where environmental concerns may have an adverse effect on high expectations. The third chapter presents a review of theoretical approaches to access and accessibility from seven different research perspectives: information access disparity, information seeking, information retrieval, information quality, information security, information management, and archives management. Six approaches to information access and accessibility are identified: [1] social, economic, and political participation; [2] ‘smart’ and evolving technology; [3] power and control; [4] sense-making; [5] knowledge representations, and [6] information survival. The fourth chapter addresses the bottlenecks and requirements for information access and accessibility, culminating in a checklist for organizations to assess these requirements within their own business processes. In the fifth chapter, some perspectives on artificial intelligence and the future of information access are presented. The sixth chapter represents an attempt to draw conclusions and to bring this book to a close.
BackgroundGait analysis has been used for decades to quantify knee function in patients with knee osteoarthritis; however, it is unknown whether and to what extent inter-laboratory differences affect the comparison of gait data between studies. Therefore, the aim of this study was to perform an inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait of patients with knee osteoarthritis.MethodsKnee biomechanics and muscle activation patterns from patients with knee osteoarthritis were analyzed, previously collected at Dalhousie University (DAL: n = 55) and Amsterdam UMC, VU medical center (VUmc: n = 39), using their in-house protocols. Additionally, one healthy male was measured at both locations. Both direct comparisons and after harmonization of components of the protocols were made. Inter-laboratory comparisons were quantified using statistical parametric mapping analysis and discrete gait parameters.ResultsThe inter-laboratory comparison showed offsets in the sagittal plane angles, moments and frontal plane angles, and phase shifts in the muscle activation patterns. Filter characteristics, initial contact identification and thigh anatomical frame definitions were harmonized between the laboratories. After this first step in protocol harmonization, the offsets in knee angles and sagittal plane moments remained, but the inter-laboratory comparison of the muscle activation patterns improved.ConclusionsInter-laboratory differences obstruct valid comparisons of gait datasets from patients with knee osteoarthritis between gait laboratories. A first step in harmonization of gait analysis protocols improved the inter-laboratory comparison. Further protocol harmonization is recommended to enable valid comparisons between labs, data-sharing and multicenter trials to investigate knee function in patients with knee osteoarthritis.
MULTIFILE
PURPOSE: To compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects.SCOPE: Nine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions.RESULTS: Perturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait.CONCLUSIONS: Healthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.