Over the past three years we have built a practice-oriented, bachelor level, educational programme for software engineers to specialize as AI engineers. The experience with this programme and the practical assignments our students execute in industry has given us valuable insights on the profession of AI engineer. In this paper we discuss our programme and the lessons learned for industry and research.
MULTIFILE
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
In my previous post on AI engineering I defined the concepts involved in this new discipline and explained that with the current state of the practice, AI engineers could also be named machine learning (ML) engineers. In this post I would like to 1) define our view on the profession of applied AI engineer and 2) present the toolbox of an AI engineer with tools, methods and techniques to defy the challenges AI engineers typically face. I end this post with a short overview of related work and future directions. Attached to it is an extensive list of references and additional reading material.
LINK
Het RAAK-MKB project "(G)een Moer Aan" heeft zich gericht op het ontwerpen van een veilige en effectieve ondersteuning van een cobot in een productieomgeving. De focus is hierbij gelegd op productiehandelingen die in veel sectoren voorkomen en die relatief veel arbeidstijd kosten, zoals het indraaien van moeren en bouten in een object. Binnen het project is veel kennis opgedaan dit heeft geresulteerd in gripperontwerpen die in staat zijn een bout in een flens te draaien. Daarnaast is kennis gegeneerd van vision technieken om gaten e.d. te detecteren, en het meenemen van (beleefde) veiligheid in het ontwerp van een cobot systeem. Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als voor de studenten in het onderwijs. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect veilig ontwerpen, worden toekomstige engineers (de studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) Het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) Het realiseren van trainingsmateriaal t.b.v. het rekening houden met en veilig ontwerpen van cobotsystemen. Door o.a. kennis aan te dragen omtrent het doen van een correcte risico analyse van het proces. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodules en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.
Het RAAK-MKB project Aerobic heeft zich gericht op modulaire robotica (grippers, handling en vision systemen) en specifiek binpicking. Binnen dit project is veel kennis opgedaan die heeft geresulteerd in diverse fysieke demonstrators (robotopstellingen t.b.v. binpicking). Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als studenten. Daarnaast is deze kennis praktisch gemaakt en laagdrempelig toepasbaar. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect “binpicking” met behulp van robots, worden toekomstige engineers (onze studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) het realiseren van trainingsmateriaal t.b.v. het praktisch toepassen van kennis die betrekking heeft op de gerealiseerde binpicking-demonstrator binnen het RAAK project. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodule en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.