Design schools in digital media and interaction design face the challenge of integrating recent artificial intelligence (AI) advancements into their curriculum. To address this, curricula must teach students to design both "with" and "for" AI. This paper addresses how designing for AI differs from designing for other novel technologies that have entered interaction design education. Future digital designers must develop new solution repertoires for intelligent systems. The paper discusses preparing students for these challenges, suggesting that design schools must choose between a lightweight and heavyweight approach toward the design of AI. The lightweight approach prioritises designing front-end AI applications, focusing on user interfaces, interactions, and immediate user experience impact. This requires adeptness in designing for evolving mental models and ethical considerations but is disconnected from a deep technological understanding of the inner workings of AI. The heavyweight approach emphasises conceptual AI application design, involving users, altering design processes, and fostering responsible practices. While it requires basic technological understanding, the specific knowledge needed for students remains uncertain. The paper compares these approaches, discussing their complementarity.
DOCUMENT
Vandaag de dag loopt de discussie over AI hoog op: wat betekent AI voor verschillende beroepen? Welke competenties zijn straks wellicht niet meer relevant en welke juist des te meer? En wat betekent AI voor het onderwijs? Hoog tijd dus om in het onderwijs aandacht te besteden aan het versterken van AI-geletterdheid. Ofwel de competenties die nodig zijn om AI-technologieën kritisch te kunnen evalueren, er effectief mee te kunnen communiceren en mee samen te werken, zowel thuis als op de werkplek, zodat studenten klaar zijn voor een wereld vol AI Antwoord op deze en andere vragen vind je in deze publicatie van het lectoraat Teaching, Learning & Technology zodat je in zeven minuten weer bent bijgepraat over AI geletterdheid. # AI-geletterdheid #teachinglearningandtechnology #inholland
DOCUMENT
Abstract: AI tools in radiology are revolutionising the diagnosis, evaluation, and management of patients. However, there is a major gap between the large number of developed AI tools and those translated into daily clinical practice, which can be primarily attributed to limited usefulness and trust in current AI tools. Instead of technically driven development, little effort has been put into value-based development to ensure AI tools will have a clinically relevant impact on patient care. An iterative comprehensive value evaluation process covering the complete AI tool lifecycle should be part of radiology AI development. For value assessment of health technologies, health technology assessment (HTA) is an extensively used and comprehensive method. While most aspects of value covered by HTA apply to radiology AI, additional aspects, including transparency, explainability, and robustness, are unique to radiology AI and crucial in its value assessment. Additionally, value assessment should already be included early in the design stage to determine the potential impact and subsequent requirements of the AI tool. Such early assessment should be systematic, transparent, and practical to ensure all stakeholders and value aspects are considered. Hence, early value-based development by incorporating early HTA will lead to more valuable AI tools and thus facilitate translation to clinical practice. Clinical relevance statement: This paper advocates for the use of early value-based assessments. These assessments promote a comprehensive evaluation on how an AI tool in development can provide value in clinical practice and thus help improve the quality of these tools and the clinical process they support. Key Points: Value in radiology AI should be perceived as a comprehensive term including health technology assessment domains and AI-specific domains. Incorporation of an early health technology assessment for radiology AI during development will lead to more valuable radiology AI tools. Comprehensive and transparent value assessment of radiology AI tools is essential for their widespread adoption.
DOCUMENT