© 2025 SURF
The Amsterdam University of Applied Sciences started a research and education group on Applied Quantum Computing at September 1st 2020. This group has a focus on Quantum Computing and Quantum Sensing. Quantum Computing is done together with the Computer Science program and Quantum Sensing with the new Technical Physics program which will start September 1st 2021. The group is involved in educational efforts to create a general awareness of Quantum Computing under the umbrella of the innovation hub Quantum.Amsterdam. In February 2021 the group starts a minor Applied Quantum Computing. Students learn how to program quantum algorithms and together with companies such as Capgemini, Qu & Co and SURFsara engage in projects solving real problems.
This conference paper deals with various organizations and pilot initiatives regarding the theme of sustainability.
Hoe bestrijden we energiearmoede die ontstaat in de private huursector? Hoe versterk je de cyberweerbaarheid van het mkb? En hoe kunnen we afgeschreven windmolens hergebruiken als nieuw bouwmateriaal? Het zijn slechts drie van de talloze voorbeelden van actueel praktijkgericht onderzoek aan hogescholen. Onderzoek dat direct is verbonden met grote maatschappelijke opgaven, bijvoorbeeld op het gebied van energie, klimaat, technologisering en kansengelijkheid. Voor die opgaven hebben we nieuwe kennis nodig die we snel kunnen omzetten in nieuwe producten en oplossingen. Het praktijkgericht onderzoek aan hogescholen is daarvoor een onmisbare schakel tussen fundamenteel onderzoek en onze samenleving.
MULTIFILE
The last decade has seen an increasing demand from the industrial field of computerized visual inspection. Applications rapidly become more complex and often with more demanding real time constraints. However, from 2004 onwards the clock frequency of CPUs has not increased significantly. Computer Vision applications have an increasing demand for more processing power but are limited by the performance capabilities of sequential processor architectures. The only way to get more performance using commodity hardware, like multi-core processors and graphics cards, is to go for parallel programming. This article focuses on the practical question: How can the processing time for vision algorithms be improved, by parallelization, in an economical way and execute them on multiple platforms?
The Dutch greenhouse horticultural industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through collaboration takes up a mere 25-30% of the opportunities. The greenhouse horticulture sector is generally characterized by small scale, often family run businesses. Growers often depend on the Dutch auction system for their revenues and suppliers operate mainly independently. Horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve innovative capabilities of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the programme develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Furthermore, the paper discusses our four-year programme, whose objectives are trying to eliminate interventions that stimulate the innovative capabilities of SME's in this sector and develop instruments that are beneficial to organizations and individual entrepreneurs and help them make the step from vision to action, and from incremental to radical innovation. Finally, the paper illustrates the importance of combining enterprise, education and research in networks with a regional, national and international scope, with examples from the greenhouse horticulture sector. These networks generate economic regional and national growth and international competitiveness by acting as business accelerators.
In the nineties of the last century, a lot of (ICT) incubators started in the Netherlands, many private (GorillaPark, Ant Factory, Lost Boys and Newconomy), some public, such as Twinning. Most of them stopped early this century or gone bankrupt. From 2005 university incubators like YesDelft!, Erasmus MC Incubator, UtrechtInc, Biopartner and ACE opened their doors to students which operate alongside the curriculum. Afterwards also incubators of colleges aroused, often integrated with education. Enterprize of the The Hague University of Applied Science was one of the first ones. In recent years, all kinds of private initiatives arises, called Accelerators (Rock Start and Start-Up Boot Camp). The primary purpose of an incubator is to create successful entrepreneurs, for different reasons. Much research has been done to the success rate of companies through incubators. It is assumed that the entrepreneur of a successful business should have learned a lot in this initial period. In the emerged entrepreneurial education it is therefore assumed that incubators also should be a good tool for students to quickly and efficiently learn. But is that so? As a successful serial entrepreneur, I started more than ten incubators. Most of them were a tool for regional development, cluster development or for further investments (private equity). Now he wanders if an incubator can also be a tool for teaching. He has been given the opportunity to researche this at the The Hague university for applied sciences; “What is the (added) value for entrepreneurship education of an incubator?” This paper is a preamble to that research and a call for participation.
The Dutch greenhouse horticulture industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve the innovative capacity of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the program develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Finally, the paper illustrates the importance of combining enterprise, education and research in regional networks, with examples from the greenhouse horticulture sector. These networks generate economic growth and international competitiveness by acting as business accelerators.
The emergence of collaborative workspaces is a remarkable feature of contemporary cities. These spaces have appeared rapidly, catering for the locational needs of self-employed workers, start-ups and small-size companies. The objective of this paper is to provide an analysis of four categories of collaborative workspaces (accelerators, incubators, coworking spaces and FabLabs). For the case of Amsterdam, we conducted a website content analysis to assess how these spaces position and present themselves towards potential users. The empirical evidence shows that these spaces promise a variety of benefits, ranging from business development to access to social networks. This diversity illustrates the emergence of distinct work settings in an economic environment characterised by the need to work in a social environment that at the same time stimulates networking and collaboration.