The (pre)school environment is an important setting to improve children’s health. Especially, the (pre)school playground provides a major opportunity to intervene. This review presents an overview of the existing evidence on the value of both school and preschool playgrounds on children’s health in terms of physical activity, cognitive and social outcomes. In addition, we aimed to identify which playground characteristics are the strongest correlates of beneficial effects and for which subgroups of children effects are most distinct. In total, 13 experimental and 17 observational studies have been summarized of which 10 (77%) and 16 (94%) demonstrated moderate to high methodological quality, respectively. Nearly all experimental studies (n = 11) evaluated intervention effects on time spent in different levels of physical activity during recess. Research on the effects of (pre)school playgrounds on cognitive and social outcomes is scarce (n = 2). The experimental studies generated moderate evidence for an effect of the provision of play equipment, inconclusive evidence for an effect of the use of playground markings, allocating play space and for multi-component interventions, and no evidence for an effect of decreasing playground density, the promotion of physical activity by staff and increasing recess duration on children’s health. In line with this, observational studies showed positive associations between play equipment and children’s physical activity level. In contrast to experimental studies, significant associations were also found between children’s physical activity and a decreased playground density and increased recess duration. To confirm the findings of this review, researchers are advised to conduct more experimental studies with a randomized controlled design and to incorporate the assessment of implementation strategies and process evaluations to reveal which intervention strategies and playground characteristics are most effective. https://doi.org/10.1186/1479-5868-11-59 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
MULTIFILE
Objective : The first aim of this study was to determine whether adolescents with asymptomatic Generalized Joint Hypermobility (GJH) have a lower level of physical functioning (physical activity level, muscle strength and performance) compared to non-hypermobile controls. Secondly, to evaluate whether the negative impact of perceived harmfulness on physical functioning was more pronounced in adolescents with asymptomatic GJH. Methods : Cross-sectional study. Sixty-two healthy adolescents (mean age 16.8, range 12-21) participated. Hypermobility (Beighton score), perceived harmfulness (PHODA-youth) and muscle strength (dynamometry), motor performance (Single-Leg-Hop-for-Distance) and physical activity level (PAL) (accelerometry) were measured. Hierarchical regression analyses were used to study differences in physical functioning and perceived harmfulness between asymptomatic GJH and non-hypermobile controls. Results : Asymptomatic GJH was associated with increased knee extensor muscle strength (peak torque/body weight; PT/BW), controlled for age and gender (dominant leg; ß = 0.29; p = .02). No other associations between asymptomatic GJH and muscle strength, motor performance and PAL were found. Perceived harmfulness was not more pronounced in adolescents with asymptomatic GJH. Conclusions : Adolescents with asymptomatic GJH had increased knee extensor muscle strength compared to non-hypermobile controls. No other differences in the level of physical functioning was found and the negative impact of perceived harmfulness was not more pronounced in adolescents with asymptomatic GJH.
Forensic DNA Trace Evidence Interpretation: Activity Level Propositions and Likelihood Ratios provides all foundational information required for a reader to understand the practice of evaluating forensic biology evidence given activity level propositions and to implement the practice into active casework within a forensic institution. The book begins by explaining basic concepts and foundational theory, pulling together research and studies that have accumulated in forensic journal literature over the last 20 years.The book explains the laws of probability - showing how they can be used to derive, from first principles, the likelihood ratio - used throughout the book to express the strength of evidence for any evaluation. Concepts such as the hierarchy of propositions, the difference between experts working in an investigative or evaluative mode and the practice of case assessment and interpretation are explained to provide the reader with a broad grounding in the topics that are important to understanding evaluation of evidence. Activity level evaluations are discussed in relation to biological material transferred from one object to another, the ability for biological material to persist on an item for a period of time or through an event, the ability to recover the biological material from the object when sampled for forensic testing and the expectations of the prevalence of biological material on objects in our environment. These concepts of transfer, persistence, prevalence and recovery are discussed in detail in addition to the factors that affect each of them.The authors go on to explain the evaluation process: how to structure case information and formulate propositions. This includes how a likelihood ratio formula can be derived to evaluate the forensic findings, introducing Bayesian networks and explaining what they represent and how they can be used in evaluations and showing how evaluation can be tested for robustness. Using these tools, the authors also demonstrate the ways that the methods used in activity level evaluations are applied to questions about body fluids. There are also chapters dedicated to reporting of results and implementation of activity level evaluation in a working forensic laboratory. Throughout the book, four cases are used as examples to demonstrate how to relate the theory to practice and detail how laboratories can integrate and implement activity level evaluation into their active casework.
LINK